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1 Introduction

In this paper, we consider the Cumulative Scheduling Problem (Carlier 1987). An in-
stance of this problem is composed of a set of n tasks J = {1, . . . , n}. These tasks have
to be scheduled without preemption by a resource of a given capacity C. Each task i ∈ J

cannot be scheduled before its release date ri, has a duration pi, is characterized by a tail
qi and needs ci units of the resource to be processed. A schedule consists in assigning a
starting time si ≥ ri to each task i in such a way that the capacity of the resource is never

exceeded : ∀t,
∑

i∈{j∈J|sj≤t<sj+pj}

ci ≤ C.

In this paper, we propose some algorithms to compute lower bounds for the optimisation
version of the cumulative scheduling problem (CuSP Optimisation). In CuSP Optimisa-

tion we have to find a schedule which minimizes the makespan Cmax = maxi∈J {si + pi + qi}.
Let C∗

max be the optimal value of a given instance of CuSP Optimisation. The special
case of CuSP Optimisation where ∀i ∈ J, ci = 1 corresponds to the m-parallel machine
scheduling problem Pm|ri, qi|Cmax. Several lower bounds of C∗

max have been described for
Pm|ri, qi|Cmax (Horn 1974, Labetoulle et. al. 1984, Carlier and Pinson 1998, Haouari 2003).
In (Carlier, Pinson, Sahli and Jouglet submitted), we provided caracterizations of some
lower bounds for CuSP Optimisation to analyse their structural differences. It leaded to
the elaboration of new algorithms for Energetic Reasoning (ER) (Baptiste et. al. 2001) and
we discussed the transformation of the destructive energetic bound (the ER based checker
for CuSP Decision(Cmax)) into constructive energetic lower bounds of C∗

max. In the re-
mainder let LB0(J) = maxi∈J {ri + pi + qi} be a trivial lower bound which can be easily
computed in O(n) time. The first constructive energetic lower bound, named LBER

2 (J),
relies on particular tasks for which there is at least an interval of the time horizon in
which they are necessarily scheduled because of their release dates and tails. Such tasks
are called crossing tasks. The concept of crossing tasks is related to core times. The second
constructive energetic lower bound, named LBER

3 (J) relies on ER. Both LBER
2 (J) and

LBER
3 (J) were theoretically characterized in (Carlier J., Pinson E., Sahli A. and Jouglet

A. submitted).
Section 2 is devoted to the introduction of the energetic approach initially proposed for

the decision version of CuSP and its reformulation in the context of CuSP Optimisation.
Section 3 explains the notion of crossing tasks which is the main concept used in LBER

2 (J)
and which has also an important role in LBER

3 (J). We then describe an algorithm in
O(n log n) time for LBER

2 (J). In Section 4, we describe an algorithm in O(n2) time and an
algorithm in O(α(n)n log n log(maxi∈J pi)) for LBER

3 (J), where α(n) is the inverse function
of Ackermann.
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2 The energetic reasoning in CuSP Optimisation

A lot of works of the literature considers the decision version of the CuSP in which
all tasks have to be completed before a given value of Cmax. Being given a value Cmax,
we denote this problem by CuSP Decision(Cmax). In CuSP Decision(Cmax), tails qi
are replaced by deadlines di(Cmax) = Cmax − qi. Therefore, each task i has to processed
in interval [ri, di(Cmax)]. It can lead to unfeasible instances. The Energetic Reasoning

(ER) (Erschler and Lopez 1990) (Erschler 1991) (Baptiste et. al. 1999) is a very well
known technique to solve CuSP Decision(Cmax) allowing feasibility tests and time-bound
adjustments. Given a time interval [α, δ], ER is based on the computation of the minimal
part, named energy, of the tasks that must be processed in any feasible schedule between
times α and δ. The minimal energy required by task i over [α, δ] is obtained from positions
of i that overlap as less as possible with the interval. The difference between the length of
a given interval multiplied by C and the sum of the tasks energies is called the slack of the
interval. If we can find an interval with a negative slack, then the instance is unfeasible.
While the slack has to be non-negative on any interval, it is sufficient to test at most O(n2)
particular intervals (Baptiste et. al. 1999). It permitted to exhibit a checker which runs
in O(n2) time (Baptiste et. al. 2001). Derrien and Petit (Derrien and Petit 2014) have
later reduced the number of intervals which has to be considered. Ouellet and Quimper
(Ouellet and Quimper 2018) described an O(n log2 n) algorithm. Recently, we provided a
O(α(n)n log n) algorithm for the checker (Carlier, Sahli, Jouglet and Pinson submitted),
where α(n) is the inverse function of Ackermann. We also provided an O(n2) algorithm for
time-bound adjustments (Carlier et. al. 2020).

In the context of CuSP Optimisation, we use ER in algorithms in which the value of
Cmax dynamically changes during the execution. Thus, the deadline di(Cmax) = Cmax− qi
of task i is also modified. Actually, it is simpler to manipulate directly tails qi which
are constant. Therefore, we propose a reformulation of ER with tails which manipulates
directly Cmax. Instead of considering intervals, we now equivalently manipulate triplets
(α, γ, Cmax) which corresponds to intervals [α, δ = Cmax − γ] in CuSP Decision(Cmax).

ri α ri + pi di − pi δ di = Cmax − qi Cmax

left shift right shift

p+
i
(α) p−

i
(γ)

γ

qi

Cmax − γ − α

Fig. 1. Intersection energy.

For given values of Cmax, α ∈ {0, . . . , Cmax} and γ ∈ {0, . . . , Cmax − α}, we define:

– δ = Cmax − γ
– ∀i ∈ J p+i (α) = min(max(0, ri + pi − α), pi), p

−
i (γ) = min(max(0, qi + pi − γ), pi) and

Wi(Cmax, α, γ) = ci min(p+i (α), p
−
i (γ), Cmax − α− γ) is the energy of task i.

– The total required energy by tasks is W (Cmax, α, γ) =
∑

i Wi(Cmax, α, γ). The slack,
which is the difference between the maximum energy available over [α,Cmax − γ] and
the total required energy by tasks, is S(Cmax, α, γ) = C(Cmax−γ−α)−W (Cmax, α, γ).

There exists a schedule with makespan Cmax only if ∀(α, γ) with α ∈ {0, . . . , Cmax−1}
and γ ∈ {0, . . . , Cmax − α− 1}, we have S(Cmax, α, γ) ≥ 0. In fact, by adapting results of
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(Baptiste et. al. 1999, Derrien and Petit 2014), there are only O(n2) couples (α, γ) values
to consider for a given value of Cmax.

3 LBER
2 (J): a constructive lower bound based on the notion of crossing-tasks

Given a makespan Cmax, a task i is called a Cmax-crossing-task if and only if there exists
an interval of time in which task i is necessarily scheduled, i.e. if Cmax−qi−pi < ri+pi. If
a task i is necessarily scheduled during interval [t, t+1), i is called a (Cmax, t)-crossing-task
(t ∈ {Cmax − qi − pi, . . . , ri + pi − 1}).

We provide an algorithm to compute the lower bound LBER
2 (J) which corresponds to

the smallest value of Cmax ≥ LB0(J) for which for any time t ∈ {0, . . . , Cmax}, the sum of
capacities required by (Cmax, t)-crossing tasks in J is lower than or equal to C. Let χ(Cmax)
be the set of Cmax-crossing-tasks and let χ(Cmax, t) be the set of (Cmax, t)-crossing tasks.
Thus, note that LBER

2 (J) corresponds to the smallest value Cmax ≥ maxi∈J (ri + pi + qi)
for which for any time t ∈ {0, . . . , Cmax} we have

∑
i∈χ(Cmax,t)

ci ≤ C.
Note that a Cmax-crossing-task i becomes crossing at time Cmax − qi − pi while it is

not crossing anymore from time ri + pi. Let T be the list of dates in {ri + pi|i ∈ J}. Our
algorithm iterates over the different t ∈ T in the non-increasing order. At each iteration of
the algorithm, we maintain an AVL-tree CT in such a way that it contains all (Cmax, t)-
crossing-task. We also maintain a variable CCT in such a way it corresponds to the sum
of the capacities of the crossing-tasks over [t − 1, t). At each iteration, we will verify that
CCT (Cmax, t− 1) ≤ C. It allows to ensure that at the end of the algorithm Cmax has been
adjusted to the smallest value Cmax ≥ LB0(J) for which for any time t ∈ {0, . . . Cmax} we
have CCT (Cmax, t) ≤ C. To maintain these properties, we use a forward linked list allowing
the tasks i which are not crossing at time t− 1 ≥ Cmax − qi − pi to be known : these tasks
have to be removed from CT . We also use another forward list allows the tasks i which
are crossing at time t− 1 ≥ ri + pi to be known and which have therefore to be inserted in
CT . When CCT > C, we adjust Cmax in such a way that CCT ≤ C. This algorithm runs in
O(n log n) time. It is analogous to the sweep algorithm of (Beldiceanu and Carlsson 2002)
verifying the cumulative constraint. It uses additional data structures for adjusting Cmax.

4 LBER
3 : a constructive lower bound based on the energies

We also provide two algorithms to compute LBER
3 (J) which corresponds to the smallest

value of Cmax ≥ LBER
2 (J) for which for any ∀(α, γ) with α ∈ {0, . . . , Cmax − 1} and

γ ∈ {0, . . . , Cmax − α− 1}, we have S(Cmax, α, γ) ≥ 0.
Our first algorithm uses twice an adjustment procedure of Cmax. Indeed, the ri and qi

play a symmetrical role. Therefore, for each given α ∈ {ri, ri + pi, Cmax − qi − pi|i ∈ J},
we check the couples (α, γ) with γ ∈ {Cmax− ri− pi, qi+ pi, qi, α+ qi− ri|i ∈ J} such that
γ < Cmax−α. Next, we build the instance in which the ri and the qi values are interchanged
and we apply the same procedure. It ensures that all relevant couples (α, γ) identified by
(Baptiste et. al. 1999, Derrien and Petit 2014) are considered during the algorithm. The
adjustment procedure iteratively considers the different pertinent values of α in an outer
loop while. For each value of α it then considers the pertinent values of γ in decreasing
order, allowing the right bound of the associated interval to increase iteratively while we
maintain the value of the required energies of the task in this interval. Each time it is
detected that the slack is negative on the current interval, the value of Cmax is adjusted
and our data structures are updated to continue the consideration of the other intervals.
The whole algorithm runs in O(n2) time and uses only simple data structures (arrays and
forward linked lists).
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Our second algorithm relies on the direct use of our checker described in (Carlier J.,
Sahli A., Jouglet A. and Pinson E. submitted) to do a dichotomic search on LBER

3 (J).
The complexity is theoretically attractive : O(α(n)n log n log(maxi∈J pi)), where α(n) is
the inverse function of Ackermann.

A drawback is that we don’t compute the energetic balance of each classical interval
which should be useful for computing adjustments. Moreover, the checker uses very complex
data structures which makes it very hard to implement.
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