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Abstract. The research deals with the evaluation of the Conditional Value-at-Risk
(CVaR) for the completion time in scheduling problems represented as temporal
activity networks where we assume that only a fuzzy representation for the activity
integer valued durations is known to the scheduler. More precisely, we address the
evaluation of the CVaR associated to a feasible schedule, and we extend the approach
recently proposed for the case of interval valued durations. We develop and analyze
a suitable computational method to obtain the fuzzy evaluation of the CVaR of
the completion time of a given schedule. The proposed method enables to use the
CVaR as quality criterion for wide classes of scheduling approaches considering risk-
aversion in different practical contexts when only a fuzzy representation of activity
durations is known.
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1 Introduction

This paper addresses the evaluation of the Conditional Value-at-Risk (CVaR) of the
completion time (hereinafter indicated as makespan) when the scheduling problem is rep-
resented by a temporal network (Elmaghraby 1977). At this aim, we consider scheduling
models with a fixed and given set of precedence relations, but (independent) fuzzy process-
ing times. More specifically, this research work assumes that non-deterministic durations
are considered as fuzzy sets (Słowiński and Hapke 2000). The objective is to evaluate the
CVaR of the makespan which is in general an NP-complete problem (Hagstrom 1988). We
extend the approach recently proposed in (Meloni and Pranzo 2020), by developing and
analyzing a suitable computational method to obtain the fuzzy evaluation of the CVaR
of the makespan of a given schedule. The proposed algorithms are pseudo-polynomial in
the general case, but they have been tested on a wide set of realistic instances for the
experimental validation of their efficiency. The evaluation of the CVaR of the uncertain
makespan Cmax is an issue arising in several practical applications such as: project or task
bidding, risk evaluation and mitigation, due date setting or acceptance, order proposal and
acceptance, and robust scheduling (Elmaghraby 2005, Lawrence and Sewell 1997). The
goals of this research is to propose and test a method for computing the CVaR of the
makespan in the case of fuzzy durations, and to stimulate future research works devoted
to the development of algorithms and/or other useful performance measures.
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2 The CVaR of the makespan

In many applications the scheduler may be risk-averse and may prefer solutions that
do not just perform well “on average", but that also perform satisfactorily “in most cases"
(Elmaghraby 2005). Nevertheless there is no universally accepted single risk measure. In
fact, each measure has its own advantages and disadvantages (Bertsimas et. al. 2004) and
the choice also reflects a subjective preference of the decision makers. Several scalar per-
formance indicators have been used to characterize the makespan Cmax of a stochastic
activity network. They include the CVaR at a probability level γ:
CVaRγ(Cmax) = E(Cmax|Cmax ≥ qγ(Cmax)). It is also called γ-Tail Expectation or Ex-
pected shortfall (at level γ) of the makespan, and is related to the Value-at-RiskVaRγ(Cmax)

(Bertsimas et. al. 2004, Rockafeller 2007): CVaRγ(Cmax) = 1
1−γ

∫ 1

γ
VaRβ(Cmax) dβ.

Where VaRγ(Cmax) = inf{t : prob(Cmax ≤ t) ≥ γ} is a measure commonly used in
finance which are gaining momentum also in scheduling (Lawrence and Sewell 1997, Sarin
et. al. 2014). VaRγ(Cmax) represents a threshold that is exceeded in (1 − γ)100% of all
cases, while the CV aRγ(Cmax) represents the expected value of all cases exceeding the
threshold VaRγ(Cmax). Considering the definitions, the following holds for all γ ∈ [0, 1]:
VaRγ(Cmax) ≤ CV aRγ(Cmax). If a decision maker is not only concerned with the fre-
quency of undesirable outcomes, but also with their severity, CVaRγ is recommended in-
stead of VaRγ (Bertsimas et. al. 2004, Sarin et. al. 2014). Higher values of γ are cho-
sen by decision makers who are more risk-averse, and γ = 0 represents the risk-neutral
choice. In fact, as γ tends to 1 (i.e., its upper extremum), the CVaRγ(Cmax) tends to the
worst case W ; while when γ tends to 0, CVaRγ(Cmax) tends to the expected value of the
makespan E(Cmax). The features offered by CVaR are also useful in planning and schedul-
ing problems based on stochastic activity networks models (Meloni and Pranzo 2020, Sarin
et. al. 2014).

3 Fuzzy temporal activity networks

A fuzzy temporal activity network (FTAN ) is a temporal activity nertwork with fuzzy
valued durations. It can be defined by the pair (G,D), where G = (N,A) is the prece-
dence DAG, the set of nodes N is associated to events, the set A of arcs represents the
activities, and D = (D1, . . . ,Dm) is the vector of m fuzzy durations associated to the
m arcs in A representing the activities. The network is directed, connected, and acyclic
with single source and sink nodes. In a FTAN, all quantities that depend on the activ-
ity durations have a fuzzy characterization. Therefore, the starting and completion time
of any activity, and the makespan Cmax are all fuzzy quantities, i.e., fuzzy sets of the
real line IR. A fuzzy set M of the universe of values X is characterized by a member-
ship function µM which takes its value in interval [0, 1]. For each element x ∈ X, µM (x)
defines the degree to which x belongs to M = {x ∈ X;µM (x) ∈ [0, 1]}. An α-level cut
(or α-cut, for short) of M is the crisp set Mα = {x ∈ X|µM (x) ≥ α}. The support
of M is the crisp set supp(M) = {x ∈ X|µM (x) > 0}. The duration of all the activi-
ties is a fuzzy number which is defined as a bounded support fuzzy quantity whose α-
cuts are closed intervals. More specifically, we consider integer fuzzy numbers which are
characterized as follows: i) the support is a closed integer interval denoted as [M,M ];
ii) M is normal, i.e., there exists x̂ ∈ [M,M ]|µM (x̂) = 1; iii) for any x1, x2 ∈ [M, x̂],
µM (x1) ≤ µM (x2) holds; and iv) for any x1, x2 ∈ [x̂,M, ], µM (x1) ≥ µM (x2) holds. Given
the fuzzy durations D = (D1, . . . ,Dm), the extension principle (Zadeh 1965) provides a
powerful technique to extend a real continuous function of the activity durations (such as
CVaRγ(Cmax)) to a fuzzy function F (D) of the fuzzy durations D. Moreover, the decom-
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position by α-cuts can be used to compute that fuzzy function by means of a decomposition
method (Nguyen 1978): [F (D)]α = F ([D1]α, . . . , [Dm]α). According to this method, the
membership function µF (x) of F (D) can be reconstructed from its α-cuts Fα as follows:
µF (x) = max{α : x ∈ Fα}. We adopt a piecewise linear model for the membership func-
tion of the activity durations to simplify either information collection and computational
aspects. We use a representation based on the full breakpoints ordered sequence which is
very general and can be easily adapted to the cases of popular models such as triangular,
trapezoid, and six-points approximated functions (Fortemps 1997).

4 Evaluation of the CVaR of the makespan in FTANs

The case of crisp (i.e., ordinary) interval durations can be considered as a special case
of FTAN. For this special case, in (Meloni and Pranzo 2020) an algorithmic approach
has been proposed and experimentally validated. This approach is based on a counting
approach to evaluate the CVaRγ for the makespan. The counting approach, starting from
the pessimistic makespan (i.e., the worst possible makespan W ), counts backwards how
many configurations lead to each possible makespan value. This process is implemented as
an iterative procedure which continues until sufficient information has been gathered to
compute the CVaR at a desired probability level γ.

On the basis of the computational results reported in (Meloni and Pranzo 2020), in this
work we adopt an algorithm configuration for the crisp case which is able to determine a
fast and extremely good estimation of CVaR of the makespan in O(Γ 2m2), where m is the
number of arcs of the network, and Γ is the amount of uncertainty of the activity network
represented by the size (in terms of number of integers) of the time interval [Cmax, Cmax],
where Cmax (Cmax) is the makespan when all the activities durations are at their minimum
(maximum) value. According to the α-cuts decomposition method, we follow an approx-
imated approach for the evaluation of CVaRγ of the makespan for more general FTANs.
To this aim, the basic algorithm for CVaRγ evaluation involving ordinary (i.e., non-fuzzy)
intervals can be extended to solve the fuzzy cases, by the decomposition of the membership
functions of the activity durations into a finite number of α-cuts. In the proposed method
the basic algorithm can be applied on the instances associated to the selected α-levels to
obtain the corresponding α-cuts of the desired fuzzy CVaRγ evaluation. This finite number
of α-cuts are used to obtain an approximated reconstruction of the membership function
µF (x) of CVaRγ . Applying the general reconstruction rule described in the previous section
(i.e., µF (x) = max{α : x ∈ Fα}) to a finite set of α-cuts produces a stepped function that
can be interpolated with a piece-wise linear function using the extreme points of the α-cuts
as breakpoints. More specifically, in the α-cuts decomposition, for each selected level α,
each fuzzy duration is cut at level α. This decomposition gives a set of activity networks
with interval valued durations, each of which can be solved as a crisp instance. Then, in
the successive fuzzy reconstruction procedure, an approximation of the fuzzy membership
function of CVaRγ is determined from their α-cuts (e.g., see (Fargier et. al. 2000)).

This method is simple to implement but it could be intractable if ran for too many
cuts and can be carried out only on a selection of suitably chosen level-cuts. Thus an issue
comes from the selection of the relevant α-cuts. Possible solutions include: i) to choose
α-cuts arbitrarily, e.g., according to a precision degree fixed by the user; ii) to use a given
number of α-cuts at fixed α levels. Since we consider fuzzy durations represented by piece-
wise linear functions, we adopt a more suitable choice of the levels α allowing for an accurate
computation of the fuzzy quantities of interest. In fact, the resulting fuzzy quantities will
be described by piece-wise linear functions too. Hence, the relevant α-cuts will be those
corresponding to the breakpoints (i.e., of the right or left parts) of these fuzzy intervals.
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Assuming these levels known (otherwise they can be easily determined in a pre-processing
phase), an exact (approximate) interval-based procedure applied to the breakpoint values
would compute the actual (approximate) fuzzy CVaR values. In the proposed method, the
α-cuts decomposition has a preliminary step devoted to determine the α-levels to adopt on
the basis of either a specific input or default setting. We can then apply the algorithm to
solve the case of interval valued durations to know the corresponding α-cuts of the CVaRγ .
The fuzzy CVaRγ is then reconstructed from its α-cuts and returned as output. Considering
the number K of α-cuts used in the adopted decomposition, the overall complexity of the
algorithm is O(KΓ 2m2). In particular, associating the α-cuts to breakpoints (which is
adopted as default scheme in our method) yields to a complexity O(KBΓ

2m2), where KB

is the overall number of the different α values in breakpoints in the durations contained in
the FTAN.

A computational study is conducted to test the proposed approach on a benchmark
set of realistic project scheduling problems. The overall speed and quality of the proposed
method makes it an enabling tool for the use of CVaR as an analysis criterion in fuzzy
scheduling problems, while the trade-off between accuracy and computation effort indicates
a possible research direction regarding the strategies for choosing the decomposition scheme
in terms of both structure and size of the α sample set. Further research directions include
the application of the proposed methodology in real contexts, and the improvement in the
performance of the algorithm devoted to solve crisp-interval instances.
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