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1 Introduction

This paper tackles the Flexible Cyclic Jobshop Scheduling Problem (FCJSP). We pro-
pose a Mixed Integer Linear Programming (MILP) formulation for the FCJSP along with
a Benders decomposition algorithm adapted for the FCJSP. The Basic Cyclic Scheduling
Problem (BCSP) is a generalisation of the basic scheduling problem where a schedule of el-
ementary tasks i ∈ T = {1, ..., n} is infinitely repeated. This problem has been studied a lot
since it has applications in many fields such as parallel processing ([Hanen and Munier, 1995]),
staff scheduling ([Karp and Orlin, 1981]), or robotic scheduling ([Kats and Levner, 1996]).
[Hamaz et al., 2018a] studied the BCSP where the processing times are affected by an
uncertainty effect.

To specify a BCSP, we are given a set of elementary tasks i ∈ T and their respective
execution time pi. Also, we define ti(k) ≥ 0 the starting time of occurrence k of task i ∈ T .
The order in which the tasks are to be executed is fixed by precedence constraints. A prece-
dence constraint indicating that task i must be completed before starting the execution for
task j can be expressed as a quadruplet (i, j, pi, Hij), where Hij is called the height of the
precedence constraint and represents the occurrence shift between tasks i and j. In simple
terms, it states that the k+Hij-th occurrence of task j cannot start before the end of the
k-th occurrence of task i. Precisely, it states that : tj(k +Hij) ≥ pi + ti(k).

2 The cyclic jobshop scheduling problem

In the Cyclic Jobshop Scheduling Problem (CJSP), each elementary task i ∈ T =
{1, ..., n} is assigned to a machine ri ∈ R = {1, ..., R}, with R < n and elementary tasks
linked by precedence constraints constitute jobs. For instance, in a manufacturing context, a
job might represent the manufacturing process of a product as a whole, while an elementary
task represents only one step of the manufacturing process.

Due to its numerous applications in large-scale production scheduling, the CJSP has
received at lot of attention from the research community. [Hanen, 1994] proposed a MILP
for this problem and proved some of its properties. [Brucker et al., 2012] also proposed a
MILP for a CJSP with transportation by a single robotic cell. [Draper et al., 1999] proposed
an alternative formulation to solve CJSP problems as constraint satisfaction problems.
[Hamaz et al., 2018b] studied the CJSP with uncertain processing time. The inclusion of
machines in the CJSP leads to a lack of resources, since the tasks are competing for
the working time of the machines. This lack of resources is represented by disjunction
constraints, which state that for a pair of tasks (i, j) ∈ T 2, i 6= j, that must be executed on
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the same machine, i.e. ri = rj , an occurrence of i and an occurrence of j, cannot be executed
at the same time. In the following of this paper, we will denote by D = {(i, j)|R(i) ∩
R(j) 6= ∅} the set of pairs of tasks linked by disjunction constraints. Mathematically,
the disjunction between two tasks (i, j) ∈ T 2, i 6= j is modeled with the two following
disjunction constraints (1):

tj(k +Kij) ≥ ti(k) + pi and ti(k +Kji) ≥ tj(k) + pj . (1)

where Kij (resp. Kji) is the height of the disjunction constraint, i.e. the occurrence
shift between tasks i and j (resp. j and i). It has been proven by [Hanen, 1994] that a
feasible schedule for a CJSP must satisfy Kij +Kji = 1.

Note that in this problem the variables are the cycle time α, the starting times of
each elementary tasks (t)i∈T , and the heights of the disjunctive constraints, (K)(i,j)∈D. A
feature of the CJSP is the Work In Process (WIP). It corresponds to the maximum number
of occurrences of a job processed simultaneously. Mathematically, the role of the WIP can
be modelled as the height of the precedence constraint from fictive task e to fictive task s,
and can be explained by the equation :

s(k) ≥ e(k −WIP ).

In our study, we aim at minimizing the cycle time α, so the WIP and the Hij , (i, j) ∈ E are
given. Modelling of the CJSP for the minimisation of the cycle time α with known heights
as been proposed by [Hanen, 1994] and is used by [Brucker et al., 2012] to solve a CJSP
with transportation.

[Hanen, 1994] proposes to define the variable τ = 1
α and for all i ∈ T , the variable

ui =
ti
α . Then CJSP can then be considered as a MILP in the following form:

max τ

s.t.

τ ≤ 1

pi
, ∀i ∈ T (2a)

uj +Hi,j ≥ ui + τpi, ∀(i, j) ∈ E (2b)
uj +K(i, j) ≥ ui + τpi, ∀(i, j) ∈ D (2c)
K(i, j) +K(j, i) = 1, ∀(i, j) ∈ D (2d)

K(i, j) ∈ Z, ∀(i, j) ∈ D (2e)
ui ≥ 0, ∀i ∈ T . (2f)

The CJSP can then be solved by writing the problem as a MILP, which can be
solved using mathematical programming or using a dedicated Branch-and-Bound proce-
dure ([Fink et al., 2012], [Hanen, 1994]).

3 The flexible cyclic jobshop scheduling problem

The Flexible Cyclic Jobshop Scheduling Problem (FCJSP) is a CJSP where the ele-
mentary tasks are flexible. This means that the execution of a task i ∈ T , is assigned to
exactly one machine r in a set of machines that is a subset of the set of machines R specific
to task i. This subset is denoted R(i) ⊂ R. We model the assignment of a task i ∈ T to a
machine r ∈ R(i) as a decision variable mi,r defined as follows :
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∀i ∈ T ,∀r ∈ R(i), mi,r =

{
1 if task i is assigned to machine r
0 otherwise.

Each assignment of a task i ∈ T to a machine r ∈ R(i) is associated with a given
execution time denoted pir. Also, because we do not know a priori on which machine each
task will be assigned, we do not know the set (i, j) ∈ T 2, i 6= j, R(i, j) 6= ∅ of pairs of tasks
which are connected by a disjunctive constraint.

Based on the model of Section 2 and variables mi,r, we have proposed a MILP for the
FCJSP. A first model was proposed in [Quinton et al., 2018] but substantial improvements
have been made since this first model.

4 A Benders decomposition for the FCJSP

The FCJSP formulated as a MILP can be very hard to solve. Using CPLEX, difficult
instances with a large number of tasks or with few robots might exceed any reasonable
time limit. To tackle this issue, we propose a Benders decomposition for the FCJSP. In the
usual Benders decomposition scheme, two problems coexist: the master problem and the
sub-problem. The Master Problem (MP) consists in an integer linear problem composed of
the constraints from the model described in Section 3 involving only the integer variables,
and the optimality cuts generated at each iteration of the Benders algorithm. The remaining
constraints, involving only continuous variables or a combination of continuous and integer
variables, compose the primal sub-problem. It can be written as a linear problem. The full
description of the algorithm is available in [Quinton et al., 2019].

5 Numerical results

The MILP solving is very efficient for the easiest instances (10 tasks and 5 machines).
For those easy instances, it is much more efficient than the Benders decomposition. For
instances of average difficulty with 10 tasks and 4 machines, the MILP is still more efficient
than the Benders decomposition, but we can remark that the execution time of the MILP
is increasing much faster than the execution time of the Benders decomposition. Finally,
for the hard instances with 10 tasks and 3 machines, our Benders decomposition is always
faster to find the optimal solution than the MILP. From these results, we learn that it is
better to use the MILP for easy problems with numerous machines such as our instances
with 10 tasks and 5 machines. However, for hard instances with a considerable number of
disjunctions, such as the instances with 10 tasks and 3 machines, the execution times of
the MILP rocket up and it is much better to use the Benders decomposition to obtain an
optimal solution or a heuristic procedure to obtain a feasible solution (not presented here).

6 Conclusion

We have proposed a MILP for the FCJSP where the objective is the minimisation of
the cycle time. The problem is highly combinatorial, so we also proposed a Benders decom-
position algorithm that is more efficient for difficult instances. The Benders decomposition
includes specific cuts to ensure the feasibility of the integer solution. Numerical instances
have shown that the MILP becomes inefficient for difficult instances with many disjunc-
tions. Also, if an optimal solution is required, our Benders decomposition is more efficient
than the MILP for this type of instances.
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