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1 Problem statement

Preemptive scheduling problems assume that all resources are released during preemp-
tion periods, and that they can be used to perform other activities. However, in certain
cases, constraints require that a subset of resources remains allocated to the activity when
it has been interrupted, to ensure safety for example. Suppose one must execute an exper-
imental activity that requires an inert atmosphere for its execution. In practice, one can
stop this activity and allow the technicians and some of the equipment to be used in other
activities. However, safety and operational constraints force us to preserve the inert atmo-
sphere even when the activity is stopped (before its end). In other words, one cannot release
the equipment that ensures the inert atmosphere during the preemption periods. Tradi-
tional preemptive schedule models cannot represent this behaviour since they assume that
all resources are released during the preemption periods. Until now, the only way to model
this activity, while respecting safety requirements, was to declare it as “non-preemptive”.
However, this decision can increase the project makespan, especially when the activities
have restrictive time windows and the availability/capacity of the resources vary over time.
We call partial preemption the possibility of only releasing a subset of resources during the
preemption periods.

We are concerned here in multi-skill project scheduling problem (MSPSP) (Bellenguez
and Néron 2012). We present in this extended abstract a new variant of the MSPSP that
uses the concept of partial preemption. The variant of the problem under study is then
called Multi-Skill Project Scheduling Problem with Partial Preemption (MSPSP-PP). To
the best of our knowledge, it has not been studied yet in the scientific literature.

In the MSPSP-PP, if an activity is interrupted, we release only a subset of resources
while seizing the remainder. We can then classify the set I of activities to be scheduled into
three types according to the possibility of releasing the resources during the preemption
periods: 1) Non-preemptive activities (NP ), if none of the resources can be released; 2)
Partially preemptive activities (PP ), if a subset of resources can be released; and 3) Pre-
emptive activities (P ), if all resources can be set free. In our case, the partial preemption
is only related to mono-skilled resources, and we made the hypothesis that resources can
always be released during preemption periods.

Our objective in the MSPSP-PP is to find a feasible schedule that minimises the to-
tal duration of the project (Cmax). Finding a solution consists in determining the periods
during which each activity is executed and also which resources will execute the activity in
every period; all this, while respecting the resources capacity and the activities character-
istics. We must schedule these activities on renewable resources with limited capacity; they
can be cumulative mono-skilled resources (machines or equipment) or disjunctive multi-
skilled resources (technicians) mastering a given number of skills. Multi-skilled resources
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can respond to more than one skill requirement per activity and may execute it partially
(except for non-preemptive activities where technicians must perform the whole activity).
An activity is defined by its duration (Di), its precedence relationships (set E), its require-
ments of resources, its requirements of skills, the minimum number of technicians needed
to perform it, and the subset of preemptive resources. Activities might or not have either a
deadline or a release date. Figure 1 illustrates an example of an MSPSP-PP instance and
a possible solution.

Fig. 1. Example of an MSPSP-PP instance.

The complexity of the MSPSP with partial preemption can be established using the
classical RCPSP (Resource-Constrained Project Scheduling Problem) as a starting point.
For each instance of the RCPSP, we can match an instance of the MSPSP with partial pre-
emption, where all resources are mono-skilled, and none of the resources can be preempted.
Thus, we can define the RCPSP as a particular case of the MSPSP with partial preemp-
tion. Since the RCPSP has been proved to be strongly NP-hard (Błazewicz et al. 1983),
we can, therefore, infer that the MSPSP with partial preemption is also strongly NP-hard.

We propose five formulations for the MSPSP-PP using Mixed-Integer/Linear Program-
ming (MILP) and Constraint Programming (CP).

2 MILP formulations

We present below five time-indexed formulations of the problem over a discretized
horizon H. These formulations generalize the ones presented in (Polo et al. 2018) and
(Polo et al. 2019). All models are based on on/off binary variables Yi,t stating whether an
activity i is in process in time period t, on/off binary variables Oj,i,t = 1 if technician j is
assigned to activity i during period t, binary variable Sj,i = 1 if technician j is assigned to
non-preemptive activity i (this variable is used to express that any technician assigned to
a non-preemptive activity must remain assigned until its completeness). For any partially
preemptive activity i, an on/off binary variable Ppi,t = 1 if activity i is preempted in time
period t. For the three first models, step binary variable Zi,t = 1 if partially preemptive or
non-preemptive activity i starts in time period t or before and step binary variable Wi,t = 1
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if partially preemptive or non-preemptive activity i ends in time period t or after. We only
provide a subset of the constraints of the first model (MSPP1a): precedence constraints
(1) and the constraints (2–8) that link variables Y , Pp, Z, W , S, O and Cmax, the project
makespan. The other constraints are standard resource constraints and operator availability
constraints.

Di ∗ (1− Yl,t) ≥
|H|∑
t′=t

Yi,t′ ∀(i, l) ∈ E,∀t ∈ H (1)

Zi,t ≥ Yi,t′ ∀i /∈ P ,∀t ∈ H, ∀t′ ≤ t (2)

Wi,t ≥ Yi,t′ ∀i /∈ P ,∀t ∈ H, ∀t′ ≥ t (3)

Ppi,t = Zi,t +Wi,t − Yi,t − 1 ∀i ∈ PP ,∀t ∈ H (4)

Zi,t +Wi,t − Yi,t = 1 ∀i ∈ NP,∀t ∈ H (5)

Oj,i,t ≥ Sj,i + Yi,t − 1 ∀i ∈ NP,∀j ∈ J, ∀t ∈ H (6)

Oj,i,t ≤ Sj,i ∀i ∈ NP,∀j ∈ J, ∀t ∈ H (7)

Cmax ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (8)

Given the variables Wi,t and Zi,t, we can replace the precedence constraints (1) by a
disaggregated version below, yielding the second model (MSPP1b), while the third model
(MSPP1c) includes both constraints (1) and (9).

Zl,t +Wi,t ≤ 1 ∀(i, l) ∈ E,∀t ∈ H (9)

We also propose two mixed continuous-time/discrete-time models (MSPP2a and
MSPP2b), replacing binary variables Wi,t and Zi,t by continuous time variables Gi and
Fi representing the start and completion times of activity i, respectively. We replace con-
straints (1–5) by:

Fi + 1 ≤ Gl ∀(i, l) ∈ E (10)

Ppi,t ≤ 1− Yi,t ∀i ∈ PP ,∀t ∈ H (11)

Fi −Gi + 1 ≤ Di +
∑
t∈H

Ppi,t ∀i ∈ PP (12)

Fi −Gi + 1 ≤ Di ∀i ∈ NP (13)

Fi ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (14)

Gi ≤ t ∗ Yi,t + (1− Yi,t) ∗ |H| ∀i ∈ I (15)

It remains to express the fact that partial preemption variables Ppi,t must be equal to 0
outside the execution interval of i. We either use the following constraints using variables Y
(MSPP2a):

Ppi,t ≤
t∑

t′=1

Yi,t′ ; Ppi,t ≤
|H|∑
t′=t

Yi,t′ ∀i ∈ PP ,∀t ∈ H (16)

or the following ones using variables F and G (MSPP2b):

Fi ≥ t ∗ Ppi,t ; Gi ≤ t ∗ Ppi,t − (1− Ppi,t) ∗ |H| ∀i ∈ PP ,∀t ∈ H (17)

In Section 3, we compare the proposed MILP formulations in terms of LP relaxation
strength and we provide a computational comparison with the constraint programming
formulation described in (Polo et al. 2019).
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3 Structural and computational comparisons

3.1 Structural comparison of the MILP formulations

Using the transformation Gi = |H| −
∑

t∈H Zi,t + 1 and Fi =
∑

t∈H Wi,t we show that
the constraints in model MSPP2 involving the Fi and Gi variables are all implied by the
constraints of model MSPP1 augmented with the transformation. As the computational
experiments show that there are instances where MSPP1 has a strictly better LP relaxation
than MSPP2, this yields the following result:

Theorem 1. Formulation MSPP1b is tighter than formulations MSPP2a and MSPP2b.

We could not prove a dominance relation between MSPP1a and MSPP1b, which was
corroborated by the experiments fox which some bounds provided by the MSPP1a re-
laxation are better than those provided by the MSPP1b relaxation and vice-versa, which
justifies the proposal of MSPP1c.

3.2 Computational experiments on the MILP and CP formulations

For computational tests, we use CPLEX 12.7 and CP Optimizer 12.7 for solving the
MILP models and the CP models, respectively (using the default configuration and limiting
the number of threads used by the solvers at 8). The computation time was limited to 10
minutes. We use the four sets of 30 activities instances of (Polo et al. 2019), each of
them having 50 instances and a different proportion of preemption types. The activity
durations are between 5 to 10 time units. There are up to 15 skills, 8 cumulative resources,
8 technicians (multi-skilled resources) divided into two teams, 20% of activities with time
windows, the density of precedence relationships is low, and an average optimum Cmax

between 70 and 90 time units.
First of all, the MILP formulations are only efficient when the number of preemptive

activities is high. For these instances, model MSPP1b provides the larger number of op-
timal solutions but model MSPP2b is faster and has a better average gap. There was no
perceptible advantage for the integrated model MSPP1c. These computational results con-
firm one more time that a theoretically stronger formulation does not necessarily imply
better practical performance. The MILP MSPP2b model outperforms the CP one when
the percentage of preemptive activities is high, proving the optimality of a higher number
of instances, and giving a lower average gap. CP, on the other hand, gives better results
when this percentage is low. One could then say that the two methods are complementary.

Future research should be done in order to develop a hybrid method that better exploit
the characteristics of each instance.
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