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Abstract. This paper deals with the problem of scheduling on a two-machine open
shop subject to constraints given by an agreement graph G, such that jobs can be
processed simultaneously on different machines if and only if they are represented
by adjacent vertices in G. The problem of minimizing the maximum completion
time (makespan) is known to be NP-hard. In this work, we study the complexity
of the problem when restricted to trees. Then, we present six Mixed Integer Lin-
ear Programming (MILP) models along with an experimental study to test their
performance.
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1 Introduction

The Open Shop problem with Agreement graph (OSA) which is discussed in this paper
can be described as follows. The inputs consist of a finite set {Jj , j = 1, . . . , n} of n
jobs that has to be processed on a set {Mi, i = 1, . . . ,m} of m machines and a simple
graph G = (V,E) over the jobs, called the agreement graph. Each job Jj consists of m
operations Jij (i = 1, . . . ,m), where Jij has to be processed on machine Mi for pij ≥ 0
time units. The order in which the jobs are processed on the machines is not fixed. On
the other hand, each vertex in G represents a job and two jobs can be processed at the
same time on different machines (are not in conflict) if and only if they are adjacent in G.
The objective is to find a feasible schedule that minimizes the maximum completion time
(makespan). According to the three field classification α/β/γ of Graham et al. [4], we denote
our scheduling problem by O2|AgreeG = (V,E)|Cmax, where AgreeG = (V,E) indicates
the presence of an agreement graph G = (V,E) over the jobs. The proportionate processing
times assumption implies that each job Jj has the same processing requirement pj on each
machine (pij = pj for all jobs Jj and all machinesMi); in that case, the resulting problem is
called the proportionate OSA problem and it is denoted Om|AgreeG = (V,E), prpt|Cmax.

In some practical applications, the jobs may require, besides the machines, some addi-
tional non-sharable resources with limited capacities for their processing [1]. In this case,
two jobs can be processed simultaneously on different machines if the total requirement of
at least one resource does not exceed its capacity. Therefore, this problem can be modeled
as an OSA problem. For more details about the correspondence between the OSA problem
and the open shop under resource constraints, the interested reader is referred to [6].
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2 Literature review

Scheduling with agreement graph G = (V,E) is equivalent to scheduling with conflict
graph G = (V,E) (complement of the agreement graph). Tellache and Boudhar [6] studied
the Open Shop problem with Conflict graph (OSC). They showed that the two-machine
OSC problem with pij ∈ {1, 2, 3} is NP-hard in the strong sense even when restricted
to complements of bipartite graphs. The same result holds for the three-machine OSC
problem with pij = 1 and an arbitrary conflict graph. After that, efficient algorithms were
proposed for the two-machine OSC problem with pij ∈ {0, 1, 2}, and for the three-machine
OSC problem with pij = 1 and G being a complement of triangle-free graph. They also
proved that by allowing preemption, the two-machine OSC problem becomes easy to solve
for arbitrary conflict graphs. On the other hand, they found that the OSC problem is
polynomially equivalent to a special case of the open shop under resource constraints, from
which new complexity results of the latter problem were established. They also presented a
two-phase heuristic approach and lower bounds for the general m-machine OSC problem.
In [5], the authors considered the same problem. They first proved the NP-hardness of the
case of two values of processing times and more general agreement graphs which closes
definitely the complexity status of the problem. Then, they presented some restricted cases
that can be solved in polynomial time. They also derived new complexity results of the
open shop under resource constraints and of the partition into triangles problem.

3 NP-hardness results

In this Section, we show that the OSA problem is NP-hard even when restricted to
trees. The problem used in the reduction process is the 2-partition problem [3].

Theorem 1. The problem O2|AgreeG = (V,E)|Cmax is NP-hard in the ordinary sense
for G being a tree.

In the following theorem, we consider the proportionate open shop problem.

Theorem 2. The problem O2|AgreeG = (V,E), prpt|Cmax is NP-hard in the ordinary
sense for G being a tree.

4 Mathematical models

The following models are proposed for the problem O|AgreeG = (V,E)|Cmax. The
parameters used are:

– ajk: 1 if Jj and Jk are in conflict, 0 otherwise.
– M : big constant.

The decision variables of the first model are:

– Cmax: the maximum completion time determined by the completion time of the last
operation.

– Cij : completion time of job Jj on machine Mi.
– xijk: 1 if job Jj is scheduled any time before Jk on machine Mi, 0 otherwise.
– yii′j : 1 if job Jj is scheduled on Mi then on Mi′ , 0 otherwise.
– rjkii′ : when ajk = 1, this variable is equal to 1 if the operation Jij is scheduled any time

before Ji′k, 0 otherwise..

The MILP model is summarized in (P1).
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min Cmax

S.C Cmax ≥ Cij ; i = 1, . . . ,m; j = 1, . . . , n, (1)
Cij −M(1− xikj) ≤ Cik − pik; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (2)
Cij − Cik − pij ≥ −Mxikj ; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (3)

(P1) Cij −M(1− yii′j) ≤ Ci′j − pi′j ; 1 ≤ i′ < i ≤ m, j = 1, . . . , n, (4)
Cij − Ci′j − pij ≥ −Myii′j ; 1 ≤ i′ < i ≤ m, j = 1, . . . , n, (5)
Cij −M(1− riji′k) ≤ Ci′k − pi′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m,, j = 1, . . . , n, (6)
Cij − Ci′k − pij ≥ −Mriji′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m,, j = 1, . . . , n, (7)
xijk, yii′j ∈ {0, 1}; 1 ≤ i′ < i ≤ m, 1 ≤ j < k ≤ n, (8)
riji′k ∈ {0, 1}; (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n, (9)
Cij ≥ pij ; i = 1, . . . ,m, j = 1, . . . , n. (10)

(1) equates the makespan to the maximum of the completion times of all operations.
(2) and (3) ensure that job Jk either precedes job Jj or follows it on Mi, but not both.
(4) and (5) ensure that the operations of the same job cannot be processed at the same

time on different machines.
(6) and (7) ensure that two conflicting jobs cannot be processed simultaneously on dif-

ferent machines.

The conflict constraints between the jobs and the conflicts between the operations of the
same job can be modelled without introducing the variables yii′j and riji′k as follows.

min Cmax

S.C Cmax ≥ Cij ; i = 1, . . . ,m; j = 1, . . . , n, (1)
Cij −M(1− xikj) ≤ Cik − pik; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (2)
Cij − Cik − pij ≥ −Mxikj ; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (3)

(P2)
max{cij−ci′j ;0}

pij
+

max{ci′j−cij ;0}
pi′j

≥ 1; 1 ≤ i′ < i ≤ m, j = 1, . . . , n, (11)
max{cij−ci′k;0}

pij
+

max{ci′k−cij ;0}
pi′k

≥ 1; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n, (12)
xijk ∈ {0, 1}; i = 1, . . . ,m 1 ≤ j < k ≤ n, (13)
Cij ≥ pij ; i = 1, . . . ,m, j = 1, . . . , n. (10)

We replaced constraints (4) and (5) of (P1) by constraint (11) of (P2) and (6) and (7)
of (P1) by the constraint (12) of (P2).

The disjoint constraints of (P1) and (P2) can be written in two different ways:

– Combine each pair of inequality dichotomous constraints into a single equality con-
straint that we set equal to a surplus variable as follows:

(2) + (3)⇒

Cij − Cik +Mxikj − pij = Xijk; i = 1, . . . ,m, 1 ≤ j < k ≤ n
M − pik − pij ≥ Xijk; i = 1, . . . ,m, 1 ≤ j < k ≤ n
Xijk ≥ 0; i = 1, . . . ,m, 1 ≤ j < k ≤ n

(4) + (5)⇒

Cij − Ci′j +Myii′j − pij = Yii′k; 1 ≤ i′ < i ≤ m, j = 1, . . . , n
M − pi′j − pij ≥ Yii′k; 1 ≤ i′ < i ≤ m, j = 1, . . . , n
Yii′k ≥ 0; 1 ≤ i′ < i ≤ m, j = 1, . . . , n

(6)+(7)⇒

{
Cij − Ci′k +Mriji′k − pij = Riji′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n
M − pi′k − pij ≥ Riji′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n
Riji′k ≥ 0; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n

By replacing these constraints in (P1) and (P2), we obtain the models (P3) and (P4)
respectively.
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– Keep the first inequality and add the fact that the sum of the two variables equals 1.

(2) + (3)⇒
{
Cij −M(1− xikj) ≤ Cik − pik; i = 1, . . . ,m, 1 ≤ j 6= k ≤ n
xijk + xikj = 1; i = 1, . . . ,m, 1 ≤ j 6= k ≤ n

(4) + (5)⇒
{
Cij −M(1− yii′j) ≤ Ci′j − pi′j ; 1 ≤ i′ 6= i ≤ m, j = 1, . . . , n
yii′j + yi′ij = 1; 1 ≤ i′ 6= i ≤ m, j = 1, . . . , n

(6) + (7)⇒
{
Cij −M(1− riji′k) ≤ Ci′k − pi′k; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n
riji′k + ri′kij = 1; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n

(8) + (9)⇒
{
xijk, yii′j , riji′k ∈ {0, 1}; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n

(13)⇒
{
xijk ∈ {0, 1}; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n

By replacing these constraints in (P1) and (P2), we obtain the models (P5) and (P6)
respectively.

5 Computational experiments

The runs of the above mathematical models were made with Microsoft Visual Studio
2017 (using C++ language) and the models were solved using Cplex 12.8 solver. All experi-
ments were carried out on randomly generated instances. The conflict graph of each instance
is generated using the G(n, p) Erdős Rényi method [2], where p is the probability that an
edge exists between two vertices. The number of jobs we considered is from 3 to 11 and the
number of machines m ∈ {2, 3, 5}. We also considered three values of p, p ∈ {0.2, 0.5, 0.8}.
The processing times of the jobs were randomly generated from a uniform distribution in
the interval [0, 100]. Note that M in the experiments is set M =

∑m
i=1

∑n
j=i pij .

We observed from the implementation that the MILP models based on (P1) ((P1),
(P3) and (P5)) require less CPU time than the models based on (P2) ((P2), (P4) and
(P6)). Regarding the modeling of the disjoint constraints, we observed that the first and
third types of constraints perform better than combining the inequalities into an equality
constraint that we set equal to a surplus variable.

6 Perspectives

For future perspectives, more research is needed concerning the complexity of the OSA
problem when restricted to other particular graphs. Also, more research and numerical
simulations are needed to enhance the mathematical models, e.g. by adding valid cuts and
by introducing procedures to improve the value of big M .
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