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1. Introduction 

Production scheduling is one of the most complex tasks for manufacturing industries. It 

demands to allocate several productions orders or jobs within the machines aiming to optimize a 

set of KPIs, such as operating, financial and/or sustainable indicators, among many others. 

Certainly, the scheduling of this jobs could focus in fulfilling a single objective. However, for the 

last decades, industries have explored the inclusion of multiple objectives for balancing the best 

possible overall solution. This paper proposes Non-dominated genetic algorithm, for solving a 

flexible flow shop problem (FFSP) that minimized the total weighted tardiness and total setup 

cost.   

For solving this problem, this paper focuses in the developing a metaheuristic for a case study 

regarding the production process of a Colombian Soap Factory. The current research considers the 

following factors: the total resources available, features related to the setup times of the machines, 

processing times of the products and the due-date requirements of each customer order. 

Additionally, it is included an extra factor related with the costs that can be reduced as a 

consequence of the sequencing of jobs. 

The manufacturing environment of the Soap Factory is a FFSP with a set of 19 stages (S), each 

with a single machine   but one that contains two unrelated parallel machines. All jobs have the 

same processing route starting in stage 1 and finishing in stage 19. Nevertheless, due to 

customizations, some jobs are allowed to skip some stages, depending on its characteristics. Once 

each product completes the required operation on each stage, it must be added to the queue of the 

next stage, where it must wait in a buffer of unlimited capacity to be processed. Finally, there are 

sequence dependent setup times and the processing times are fixed (including the transportation 

times between stages). 

    FFSPs have been studied by multiple authors. Yu et al. (2018) studied a FFSP in which 

there are unrelated parallel machines. Every machine has special characteristics that allow the 

processing of certain types of products. In order to find a solution of this problem, the use of a 

genetic algorithm is proposed, in which the effect of three different mutation operators is studied 

to increase diversification in every iteration. The objective of this study was to minimize the total 

tardiness. On the other hand, Rabiee et al. (2014) and Ahonen and de Alvarenga (2017) attempt to 

minimize the makespan in a FFSP. The first authors implemented a hybrid algorithm using an 

imperialist competitive algorithm, a simulated annealing, a variable neighborhood search and a 

genetic algorithm; while the second authors performed a comparison between a simulated 

annealing and a tabu search to find the solution to the stated problem.  

Regarding the objective function, it can be said that a variety of studies focus on a single 

objective analysis; even though, real implications of scheduling problems generally involve more 

than one objective (Torkashvand et al., 2017). The above, due to the diversity of jobs that are 

found in the real industry, the processing requirements of each product, as well as the flexibility in 



terms of delivery to each customer. Consequently, Lassig et al. (2017) minimized both the 

tardiness and earliness by applying a multiobjective genetic algorithm, in an FFSP. Alternatively, 

Talbi (2009) showed that algorithms such as SPEA2 and NSGA2 are proper to approximate the 

pareto optimal set solutions with an acceptable computational complexity and are relatively simple 

in terms of its implementation. 

Finally, in terms of the inclusion of cost analysis in scheduling problems, Yu and Seif (2016)  

established a genetic algorithm to provide a solution to a flow shop scheduling problem in which 

the target is to minimize the total tardiness and the total maintenance costs. Rohaninejad et al. 

(2015) proposed a tabu search algorithm to minimize the sum of the total tardiness cost, the extra 

time cost and the setup cost. Nevertheless, this research is made for a job shop scheduling 

problem. It is also found that the analysis of costs in the objective functions of scheduling 

problems is rarely studied in the literature, even less for a FFSP like the one proposed for 

sequencing the jobs in JLS Soap Factory.  

To the best of our knowledge, there is no evidence of the study of a multiobjective FFSP that 

considers: the obtention of pareto solutions of total weighted tardiness and total setups costs, the 

allowing of skipping stages and the consideration of sequence dependent setup times.                                                       

2. Proposed solution approach 

To solve the stated FFSP an NSGA2 algorithm (Deb et al., 2002) is proposed, using a 

crossover operator and three mutation operators, which pursue the diversification in the search of 

solutions throughout the solution space (Peng et al., 2018). Moreover, the application of a 

complete factorial design is proposed to determine the parameters of the metaheuristic application. 

Initially, a population of size N is randomly generated. The population N will serve as parents 

in the first generation of the algorithm. Each individual of the population is then evaluated in the 

two objective functions that are going to be minimized. This process is performed in order to 

compare the solutions and find those that are non-dominated. Once the set of non-dominated 

solutions are found, they are assigned to a first F1 front. Subsequently, the solutions that were not 

classified in the F1 front, are compared with each other once again. Then, a second set of non-

dominated points are found. This set is again classified in a second F2 front. This procedure is 

repeated successively until all the Fn fronts are found, and each of the points generated by the 

individuals of population N are classified.  

Additionally, in order to favor the diversity of the solutions found, the density of points 

surrounding each of the solutions classified in the F fronts is estimated. This procedure is 

accomplished by calculating the average distance of two points that surround the evaluated 

solution side by side. 

By completing this process, it is possible to order the entire population N of initial parents, 

first by the non-dominance of the resulting solutions and then, by the density of the points that 

surround each of the solutions. Afterwards, the selection of the chromosomes that will be crossed 

is done through a binary tournament. Then, a two-point crossover and three mutation operators 

named as inverse, insert and swap operation, are used to enhance the diversity of the solutions 

found.  

Finally, the population of chromosomes chosen to be crossed and mutated, and the 

chromosomes originated from the previous operations, are gathered in a set P, which will be 

ordered according to the non-dominance of their solutions. This process allows to eliminate the 

worst individuals until obtaining a population of size N again. The same procedure is performed 

until the number of iterations defined as a parameter have reached its limit. 

A diversity metric is applied to determine the quality of the combination of parameters in 

terms of the distribution of points along the pareto approach. The equation for the calculation of 

diversity is shown below: 

 

          
                        

    

                     
 (1) 

 

Where       and       correspond to the euclidean distances of the end points of the 

generated front,    corresponds to the euclidean distance between two consecutive points and    is 
the average of the euclidean distances of all the points found (Deb et al., 2002). Therefore, it is 



expected for    to be as close as possible to    so as to avoid the concentration of solutions in a 

single region of the approximated pareto front.  

Four parameters are defined in order to analyze their influence in the quality of the solutions 

found by the algorithm, and consequently, in the result of the diversity metric. These parameters 

are probability of crossover (Pcross), probability of mutation (Pmut), initial population N (P_ini) 

and number of iterations (Iter). 

To estimate the parameters of the algorithm, a value of Pcross equals to 0.5 is fixed. As a 

consequence, this study benefits diversification rather than intensification in the search throughout 

the solution space. Two levels for each parameter are established for the factorial design, and 30 

randomly generated replicates of each combination are completed. Table 1 shows the factors and 

their respective levels defined for the experiment.  

Table 1. Factors and levels of the factorial design. 

Parameters 

Levels P_ini Pmut Iter 

Low 50 0.5 50 

High 100 0.9 100 

 

The diversity for each set of solutions generated by the combination of parameters is the 

response variable of the experiment.  

3. Results and discussion 

According to the results, only the effect of Pmut is statistically significant (P-value <0.05), and 

there are not interactions between parameters. As a result, in order to favor small values for the 

diversity metric, a combination of [100, 0.5, 0.5, 100] in the parameters P_ini, Pcross, Pmut, and 

Iter respectively, is chosen to be applied for all instances created to evaluate the metaheuristic. 

Figure 1 shows the main effects plot and the interactions between factors plot.  
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Figure 1. (a) Main effects plot for diversity metric. (b) Interaction plot of the parameters studied in the 

experiment. 

The proposed approach was evaluated in thirty instances in order to assess the approximation 

of the pareto front obtained with the application of the NSGA2 algorithm. Additionally, the 

metaheuristic is compared with two priority rules: longest processing time of the jobs (LPT) and 

shortest processing time of the jobs (SPT). For each of the instances evaluated, it is found that the 

proposed NSGA2 algorithm can significantly improve the results obtained from the use of LPT 

and SPT priority rules in both the total setup cost and total weighted tardiness. Finally, it is found 

that each objective function presents a decreasing trend in each generation of the population, 

which shows the ability of the metaheuristic to find non-dominated solutions in each iteration. 
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Figure 3. a) Pareto front Approximation, b) total weighted tardiness evolution and c) total setup cost evolution. 
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