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1 Introduction and problem statement

Rotor blades are one of the most expensive components in gas turbines for power gen-
eration due to the specific materials used and the complex manufacturing process needed.
For this reason, turbine blades are one of the component whose re-manufacturing is eco-
nomically viable during the maintenance of gas turbines. Nevertheless, rework activities
are subject to a considerable degree of uncertainty due to the unpredictable degree of dam-
age affecting the blades. The wear of the rotor blades could usually occur in term of lack
of material or the presence of cracks whose depth is difficult to estimate in advance. The
repair process consists in the removal of the hard coating and of the damaged parts, and
the addition of the missing material through additive manufacturing processes. Then, the
blades have to undergo a material removal process to obtain the final desired shape. This
material removal process is executed through Electrical Discharge Machining technology
(EDM), operating to lots of turbine blades belonging to the same stage of the gas turbine
and, thus, sharing the same geometrical features. To be able to process a lot of blades, the
EDM machine has to undergo a set-up to mount the right electrode. The duration of the
processing of a lot also entails a certain degree of uncertainty. Some of the blades, in fact,
during the rework process, results having damages that are not possible to repair and, thus,
have to be discarded. For this reason, the number of blades to be manufactured in a lot
cannot be known in advance. Once the lot of blades have been manufactured in the EDM
shop, it undergoes further process steps, it is integrated with new blades to complement
the missing ones and then shipped to the customer’s premises to be made available to the
turbine, thus defining a due date to be respected.

In this paper, we will focus on the EDM shop where both new and repaired blades have
to be processed. New blades follow the standard manufacturing process and the associated
production plans. Repaired blades arrive as soon as the repair process has been completed
and compete for the same resources, i.e., an EDM machine. Thus, a proper approach is
needed to schedule the processing of both the classes of blades. We model the presence
of multiple EDM machines where an already defined production plan sequences the lot of
new blades to be processed while a set of lots of repaired blades is known to be about to
require the same machines to be processed. The scheduling approach considers the need of
a set-up to be able to process a new lot of blades and aims at minimizing the tardiness of
both lots of new and repaired blades.

2 The model

The model under investigation considers K machines processing two classes of pro-
duction lots: production and repair. The main difference between the two classes is that
production lots are immediately available and can be scheduled on machines in advance.



On the contrary, the arrival of repair lots is uncertain, thus, any decision about their pro-
cessing is delayed to the moment they become available. The production of a lot is never
preempted, hence, a machine must finish the production of a lot before processing a new
one. A set-up is needed to move from the production of a lot to a new one.

The model considers a time interval [0, T] where P production lots are produced by
knowing in advance that M repair lots will require to be processed. The scheduling of the
production lots is defined and conveniently described by a vector S = |sq, ...si| where lots
between 1 and s; will be produced in sequence on the first machine, lots between s; + 1
and s will be produced by the second machine, and so on. Each lot is associated to a due
date d.; and size [.; where c indicates the class and ¢ the index of the lot.

The model assumes that the M repair lots arrive together into the system with the same
due date and only one arrival is possible in [0,7]. The state of the system is defined by a
vector |k, ..., kx,lp1, . lp Py lm1s - oy by, | With K + P+ M entries, where k; € {R, S}
(Running and Set-up) refers to the state of each machine; [, ; € [1, K] U {D} represents
the state of the ith production lot that can be assigned to a machine or completed (Done).
Similarly, 1, ; € [1, K]U{D, NA, A} represents the ith repair lot, where the two additional
states NA and A (Not Arrived and Arrived) are necessary to discriminate if the lot has
arrived or not. A repair lot can be assigned to a machine only if it has been arrived.

The initial state of the system consider all the machines as running and working the
firsts lots assigned in the schedule S, e.g., with K = 3 we will have [, =1, [, s, +1 = 2 and
lps,+1 = 3, and all the repair lots marked as NA. The model divides the time in units and
assumes a syncronous system, hence, in each time unit more than one change can occur in
the system. Each transition is the consequence of several events due to the the change of
state of the machines and the arrival of repair lots. The arrival of repair lots changes their
state from N A to A. Instead, the change of state of a machine k from R to S leads to the
completion of a lot. This transition will move the system in a state where the machine will
be in the state S and the corresponding lot will change state in D. In this case, if exist a
lm,; =k, 1 < j < M, then the machine was processing a repair lot, otherwise the machine
was processing the first production lot not in the state D, by following the sequence in S.
Vice-versa, a machine can return to the state R from the state S. Whenever this transition
is performed with both production and repair lots available, a decision must be taken, i.e.,
the machine has to decide if it has to follow the schedule or choose a repair lot. If machine
k decides to process a repair lot, then the chosen lot will move from the state A to the
state k.

The probability driving the system transitions are assumed distributed according to
phase-type distributions (PH). It is determined by a vector «, which gives the initial prob-
abilities of the transient states and a matrix A containing the intensities of the transitions
among the transient state (see (Horvath, A. 2002)). The rates toward the absorption state
are collected in a firing vector f = —A1 where 1 is a vector of ones having the same size of
the matrix A. This class of distributions is able to approximate any general distribution on
the positive axis with a pre-determined accuracy whilst the overall process preserves the
Markovian property. This allows us to model the distribution of the lot completion time
in a statistically sound manner (as described in (Angius et. al. 2018)). In the following,
the time that machine k requires to complete the lot ¢ of class ¢ follows a PH distribu-
tion represented by (auk,ci, Ak,ci) and a firing vector fy . ;. Similarly, the set-up times and
repair arrival are distributed according to a PH distribution represented by (as, As) and
(Qtm, Am).

Since transitions from a state z to a state z’ are always combinations of events that
involve the machines and the arrival of repair lots, any transition probability is the result
of a Kronecker product of the form By4(z,2') @ | Bi(z,z'). The function Ba(z,2’) is
equal to A,, if the repair lots are not arrived in both z and 2/, it is equal to the firing



vector if the repair lots arrived in 2/, and it is equal to 1 otherwise. Instead, the function
By(7',2") describes the dynamic of machine k in state z. If the machine is processing a
lot, this function behaves as Ba(z,z’) by using the corresponding values (o c.is Ak,ci)-
Otherwise, if the machine is performing the set-up, the function Ba(z,2’) takes values
from (as, As) and a behaviour similar to the previous case, but starting the execution of
a new lot after the completion of the set-up. This is done by multiplying the firing vector
by the initial vector of the corresponding lot to be processed. The firing of the set-up
coincides with a decision every time a machine has to choose between a production and a
repair lot. Because of the presence of non-deterministic decisions, the underlying process
is a Discrete Time Markov Decision Process (DTMDP) which is fully characterized by a
matrix P containing all the dynamics that do not depend on decisions and a set of matrices
Dy, ..., Dy describing the different strategies in selecting the next lot to be processed in
each machine.

3 Problem definition

Given the DTMDP described in Section 2, the aim of this work is to analyze the
tardiness of each lot as a function of a scheduler. We define a scheduler W = |wy, ..., wr|
as a sequence of T entries w; € [1,...,V] that determine which decision matrix has to
be used in each t € [1,T]. Given a scheduler W, the distribution 7 (t) of the DTMDP
evolves on time according to the formula m(t) = 7(t — 1)(P + Dy,_,,) starting from an
initial vector having all the probability mass in the initial state. Let us denote the random
variable describing the completion of the ith production lot as X, ;, computed as follows:

dp.i
Pri{X,;>dp;}=1— Zﬂ(t _ 1)F(lp,'i<>D)(P+ Dw“il))F(zp,i::D) %1
t=1

where F'<¢°"®> ig a filtering matrix whose entries are equal to one on the diagonal only if the state

satisfies the boolean condition < cond >. Filtering matrices exploit basic linear algebra to select
only the transitions of interest from the matrix used to catch the moment in which a production
lot completes its execution. For this reason, the filtering matrix on the lhs selects only the source
state in which lot ¢ is still under processing (I,; <> D), while the matrix on the rhs selects the
destination states in which the lot ¢ is completed (Ip,; == D). This guarantees that the process
performs only those transitions that lead to the completion of the considered lot. Instead, the
summation over ¢t and the multiplication by 1 are used to evaluate all the time units until the due
date, and to generate a scalar number from the distribution vector.

The computation of the time for the completion of a repair lot is slightly more complicated
because the arrival is stochastic and, as a consequence, the due date is shifted on time. Thus, the
calculations involve also the isolation of the moment in which the lot arrives into the system. By
denoting the completion of the ith repair lot with X,, ;, we have that:
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The first term isolates only those transitions starting from a state in which the repair lot is not
arrived (Im,; <> NA) and ending in a state where it is (I,,,; == A), while the second term carries
on the process for d,,,; — 1 time units. The third term is used to catch only the moment in which
the lot processing is completed ((Im,; <> NA) A (Im,s <> A)) as already done for the production
lots.

4 Numerical example

In this section we show the importance of the problem under investigation by means of a
numerical example. We performed an experiment by assuming a system having K = 3 machines



that has to produce 7 production lots and is waiting for 4 repair lots. The scheduling is such
that the first three lots are scheduled at the first machine, the fourth and the fifth are scheduled
at the second machine and the remaining lots are scheduled at the third machine. The sizes of
production lots are equal to |30, 20, 10, 30, 20, 30, 20| whereas repair lots are all composed of 30
parts each. Each part requires on average 1 time unit (TU) for being produced whereas set-ups
require 1.25 TU on average. The probability that repair lots arrive in the next time unit is 0.5.
In order to underline the strong impact that different policies have on the tardiness of each lot,
we defined two matrices, D1 and D2, that represent the two extreme cases. We defined matrix
D1 in such a way that it always selects the next production lot. On the contrary, matrix D2 gives
always precedence to repair lots. We performed an experiment by four different schedulers: the
first scheduler uses constantly matrix D;; the second always uses matrix Ds; finally, the other
two schedulers select randomly D or D2. We expect that the tardiness of production lots will be
minimized by the first scheduler and maximized by the second. Vice versa, the second scheduler
will minimize the tardiness of the repair lots and maximizes the one of the production lots. The
third and fourth schedulers are expected to provide results in between the two extremes. Figure
1 shows the probability of the tardiness of the third production lot and the third repair lot as
function of the due date. It is possible to notice that the results confirms the expectations. In fact,
the probability to complete the third production lot on time is maximized by the first scheduler
and minimized by the second. On the contrary, the second scheduler provides the best results
for the repair lot whereas it is detrimental for the production lot. Furthermore, as expected, the
trajectories referring to the random schedulers can be found between the trajectories of generated
by the first and second scheduler.
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Fig. 1. Probability of the tardiness of the third production lot and the third repair lot as function
of the due date.

5 Conclusive Remarks and Future Works

The paper presents a DTMDP that provides the tools for optimizing the scheduling of lots
whose arrival into the system is uncertain and cannot be planned in advance. We tested two
different scheduling strategies affecting the tardiness function in different ways and validating the
model. Future works will regard the identification of optimal scheduling policies.
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