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1 Introduction

A scheduling problem involving several actors, where each has its own decision-making
autonomy, in charge of executing its subset of jobs on the same resources (the jobs are
competing for the use of the same machines), can be assimilated to a multi-agent scheduling
problem, where a new type of compromise must be achieved. We define the term "agent"
as an entity associated with a subset of jobs. Each agent aims at minimizing his own
criterion that depends only on his own jobs. These agents are in competition since they
share the same resources (Agnetis, Billaut, Gawiejnowicz, Pacciarelli and Soukhal 2014)
We are therefore looking for the best compromised solutions. These problems are close to
the multi-objective optimization problems and cooperative game theory (Agnetis, Pascale
and Pranzo 2009).

To illustrate our approaches, we focus on the case of two agents A and B. In this
paper, all the developed results can be generalized to L agents. Agent A (resp. B) is
associated with the set of nA (resp. nB) jobs, denoted by NA = {J1, J2, ..., JnA

} (resp.
NB = {JnA+1, JnA+2, ..., Jn}), where n = nA + nB .

The n independent jobs should be scheduled without preemption on m identical parallel
machines. Additional renewable resources are however necessary to process each job. Several
types of such resources, denoted Rk, k = 1 . . .K, are needed. Hence, at execution time of
job j, rjk units of resource Rk are required. For each job j, the start date sj and its finished
date fj (j = 1, . . . , n) are fixed where its processing time pj = fj − sj . wj is the weight of
job j. Dealing with each type of resources k, the machine can process more than one job at
a time provided the resource consumption does not exceed a given value Rk (k = 1 . . .K).
We assume that the machines are continuously available during the time interval [0,∞).
All data are assumed positive integers. Without lost of generality, we assume that: sj < fj
and rjk ≤ Rk for all j = 1, . . . , n and k = 1, . . . ,K. The objective of each agent is to
find a feasible solution with maximum total weighted number of scheduled jobs. Let xij be
the binary decision variable where xij = 1 if machine i processes job Jj ; 0 otherwise. We
denote the maximum total weighted number of scheduled jobs of Agent A and of agent B

by: ZA =
m∑
i=1

nA∑
j=1

wj xij and ZB =
m∑
i=1

n∑
j=nA+1

wj xij , respectively.

In this study, ε-constraint approach is used to determine one Pareto optimal solution
(one objective function is minimized and the other one is bounded by Q). By modifying the
value Q iteratively, it is possible to obtain the whole set of strict Pareto optimal solutions.

According to the three-field notation of multiagent scheduling problems introduced in
(Agnetis, Billaut, Gawiejnowicz, Pacciarelli and Soukhal 2014), the addressed problems
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are denoted by Pm|CO, sj , fj , rjk, QB |ε(ZA/ZB) (computation of one Pareto optimal so-
lution) and Pm|CO, sj , fj , rjk|P(ZA, ZB) (computation of the optimal Pareto front).

This problem is NP-hard even if only one agent is considered (mono-criterion case)
(Zahout, Soukhal and Martineau 2017).

The studied problem can be met in a Data center for example, where the goal is to
optimize the objective function of each user (agent). Jobs (applications) submitted by the
users should be executed on the cluster defined by m identical parallel machines. Each
application is executed in one container virtualized by Docker software, for example. The
machines own certain limited types of renewable resources CPU, MEMORY and STOR-
AGE, with capacities Qu1 of CPU, a certain quantity of memory Qu2 and a certain storage
capacity Qu3. In this case, to execute Applicationj , a number of virtual CPUs rj1, virtual
memory rj2 and hard drives rj3 are needed.

The mono-criterion case has been addressed in (Angelelli, Bianchessi and Filippi 2014)
where the authors consider only one additional resource (memory) and develop exact and
heuristics methods to determine one feasible solution. In the context of grid computing,
(Cordeiro, Dutot, Mounié and Trystram 2011) consider the multi-agent scheduling problem
with global objective function. Each agent (including the global agent who is dealing with
whole set of jobs) aims to minimize his makespan. They study the organizations that share
clusters to distribute peak workloads among all the participants. The authors propose a
2-approximation algorithm for finding collaborative solutions.

2 Exact methods

To compute an optimal Pareto solution, we propose an integer programming formula-
tion. Unfortunately, the linear relaxation of such a model is rather poor. For this reason, we
develop a Dantzig-Wolfe decomposition scheme leading to a Branch and Price based on
column generation scheme. Firstly, let us introduce the definition of the Maximal Subsets.
Maximal Subsets: Let L be the subset of overlapping jobs where L̄ = {j :

⋂
j∈L[sj , fj)

6= ∅}. L is maximal if it is not included in any other subset of overlapping jobs. Let L be
the set of all maximal subsets, L = {L1, . . . , Lh, . . . , LH}. Dealing with Lh we can choose
arbitrarily a sample time th that belongs to the processing interval of every job in Lh,
i.e th ∈

⋂
j∈Lh

[sj , fj). There is a total ordering of the maximal subsets with respect to
sample times. According to this ordering, when we pass from a maximal subset to the next
one, at least one job finishes its processing and at least one new job starts its processing.
As a consequence, there are at most (n = nA + nB) maximal subsets. Hence, we have:
1 ≤ H ≤ n and the maximal subsets can be efficiently detected in O(n2) by using interval
graph recognition algorithm introduced in (Habib, McConnell, Paul and Viennot 2000).

2.1 Integer programming formulation

Based on maximal job subsets, we propose the following integer linear programming
(MILP) where xij is a binary variable equal to 1 if machine i processes job Jj ; 0 otherwise.

Constraints (2) allow job j to be assigned to at most one machine. Constraints (3)
allow the assignment of at most Rk resources from machine i to the jobs. The constraint
(4) express the ε-approach bounds.

MILP has mn binary variables and n + mKH + 1 constraints, with 1 ≤ H ≤ n.
Remarks: If H = n then every maximal job subset contains only one job, and the problem
is trivial to solve; And if H = 1 then all jobs overlap and the problem reduces to a
multidimensional knapsack problem MKP (Martello 1990).
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Maximise :
m∑
i=1

nA∑
j=1

wj xij (1)

subject to:
m∑
i=1

xij ≤ 1 j = 1, . . . , n (2)∑
j∈Lh

rjkxij ≤ Rk i = 1, . . . ,m; k = 1, . . . ,K; h = 1, . . . , H (3)

m∑
i=1

nB∑
j=1

wj xij ≥ QB (4)

xij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n (5)

Given QB , to compute a strict Pareto solution, we first solve Pm|CO, sj , fj , rjk, Z
B ≥

QB |ZA. Let (ẐA, ẐB) be the obtained optimal solution. We then solve the inverse problem
Pm|CO, sj , fj , rjk, Z

A ≥ ẐA|ZB . The computed solution is then optimal Pareto solution,
denoted by (ẐA, ˆZB ′).

Decomposition approach: We cannot expect the linear relaxation of MILP is good,
since it neglects the fact that the resource units are divided among the different machines.
We then apply a Dantzig-Wolfe decomposition scheme to model MILP, following the
Caprara et al.’s approach used to solve Resource Allocation Problem RAP (Caprara, Furini
and Malaguti 2013). The master problem of the resulting column generation approach may
have a huge number of columns, so a branch-and-price approach for its solution seems
reasonable. These algorithms are essentially branch-and-bound algorithms where, at each
node of the search tree, variables (columns) of the problem are generated by applying the
column generation technique to address the linear relaxation of the problem, eventually
augmented by branching constraints (see (Desaulniers, Desrosiers and Solomon 2006) for
a complete survey of column generation methods).

3 Pareto set enumeration

ε-constraint approach with different values of QB ∈ {0, . . . , QB} is used to generate the
set of strict Pareto solutions. With each value of QB we compute (ẐA, ˆZB ′), and we add
this solution to the set of strict solutions S. We then set QB = ˆZB ′ + 1 and iterate. If no
feasible solution is obtained then stop and S is the exact Pareto front.

Proposition 1. The number of strict Pareto optimal solutions is bounded by O(W )
where W = max(

∑
j∈NA wj ;

∑
j∈NB wj).

4 Computational experiments

We implement our algorithms in C + + language and experiments have been driven on
a workstation with a 2.2 Ghz Intel Core i7 processor and 16 GB of memory and a time
limit of 3600 seconds (1 hour). We use IBM ILOG CPLEX Optimization Studio version
12.8 to solve the MILP, Master and Pricing Model.

Algorithms under study have been carried out with 60 instances (adapted benchmark
proposed of Angelelli et al. (Angelelli, Bianchessi and Filippi 2014)). Number of jobs n ∈
{100, 120, 150, 180, 200}, number of parallel machines m ∈ {4, 7, 10, 15}, without lost of
generality, we normalize the capacity of each renewable resource to R1 = R2 = R3 =
{2, 4, 6}, for a total of 5×4×3 = 60 instances. 50% of n are jobs of agent A. By choosing 50%
of jobs for each agent, we are therefore interesting in solving the most difficult problems.
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Fig. 1 gives the computational time in seconds: a simple call to CPlex using the MILP
and the Branch&Price to compute one strict Pareto optimal solution. We can conclude
that Branch&Price is very efficient. For example, with 200 jobs, 15 machines and 3 types
of resources, Branch&Price needs 2 sec where MILP model needs 768 sec.

Fig. 1. Computational time in seconds

The proposed methods can be easily generated to the case of more than two agents.
This work is in progress and it will be interesting to develop lower bound to speed up the

convergence of the Branch&Price. Other methods such as Meta-heuristics and heuristics
providing high-quality solutions with a low computational running time to solve large size
instances will be developed.
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