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1. Introduction 

During the transportation of goods by rail, the processing of trains and performing rail terminal 

operations at the transshipment yard (TSY) in the railway station raise  problems of optimization 

(Boysen et al.,2012; Boysen et al., 2011; Dotoli et al.,2013; Cicheński et al., 2017). 

The work of the railway transshipment station includes the following processes:  

1. Arrival of the train at the railway transshipment station. 

2. Train service (unloading / loading of containers). 

3. Departure of the train from the station. 

Serving a train involves moving containers from one train to another, reloading the container 

from the train to storage area and from storage area to the train. 

The components of a modern railway transshipment yard (Figure 1) are proposed in (Boysen et 

al., 2012): 

1. A platform with parallel railway tracks on which trains are located; 

2. Container storage area, which is located parallel to the tracks; 

3. Gantry cranes are used to reload containers. 

 

 

Figure 1 - Scheme of a railway transshipment yard 

The operation of the transshipment yard is as follows: a train with containers (source train) 

arrives at the transshipment yard, containers from an incoming train are loaded onto the target train 

(if it is present at the station) or in the storage area. Containers from other trains and containers 

from the storage area can also be loaded onto the source train. At the end of processing, the train 

leaves the transshipment yard. 

(Boysen et al., 2011 and 2012) describe the general problem of planning the work of a 

transshipment yard, in which the following levels are distinguished: 

1. Service slot planning (transshipment yard scheduling problem, TYSP); 

2. Assignment of trains to railway tracks in one slot; 

3. Determining the position of the containers on trains; 

4. Determining of zones of action of gantry cranes; 

5. Determining the order of the moves of the containers done by the cranes. 



(Boysen et al., 2012) solve the problem at level 1: the authors propose a mathematical model 

for creating a schedule for visiting trains at the transshipment yard. This approach aims at 

distributing the trains on service slots.  

(Grebennik et al., 2017) extended the study of the level 1 problem and proceed to level 2. The 

authors propose to form time intervals for servicing trains (service slots) and to assign each train of 

such a service slot to a specific railway track of the transfer station. The proposed mathematical 

model is based on combinatorial configurations, see for example (Sachkov, 1996). (Grebennik et 

al., 2019) offer a solution of the level 3 problem which is based on the results of studies given in 

(Grebennik et al., 2017). The optimal position of the containers to be moved on the target train is 

determined. The combinatorial optimization model is proposed and analyzed. 

In this paper, we consider the following hypotheses: 

1. The cost of moving containers from the source train to the target train depends on the 

distance between the trains; 

2. If the source train and the target train are in the same service slot, they must be located on 

the nearest tracks; 

3. If the trains are assigned to different service slots, it is necessary to minimize the move of 

the gantry crane; 

4. The cost of moving containers is estimated by the distance that the gantry crane travels. 

This work is a continuation of the studies of (Boysen et al.,2012; Grebennik et al.,2017; 

Grebennik et al.,2019). Its purpose is to determine the optimal order of moves of containers 

between the trains and the storage area in the formed service slots. 

2. Problem definition 

The problem analyzed in this paper is based on two problems: the transshipment yard scheduling 

problem (TYSP) and the containers placement in rail terminal operations problem (CPRTOP). A 

set of trains with a certain number of empty freight platforms and containers and their known 

location on the train is considered. All the trains arriving at a transfer station have to be allocated 

to service slots. The number of trains that can be serviced simultaneously (in one slot) should not 

exceed the number of parallel tracks at the transshipment yard. The optimal service slot is 

constructed as the solution of the combinatorial optimization problem. Trains that are served in a 

single service slot need to reload containers from train to train, from train to storage area, or from 

storage area to train. Given the coordinates of the location of the containers for moving and the 

coordinates of the free platforms in the target trains and storage area, the problem of the optimal 

containers placement is solved as combinatorial optimization problem. Based on the results of 

solving the problem at levels 1-3 (Grebennik et. al., 2017; Grebennik et. al., 2019) we assume that 

the following data are available and known: positions of the trains selected in one slot, the 

assignment of each train on a railway track and the assignment of each container to a specified 

platform in this slot. Therefore the problem of the relocation order of containers at a transshipment 

yard (ROCTY) can be stated as follows: let a service slot with specified locations of trains on the 

tracks is defined, the coordinates of containers and free platforms on trains and in the storage area 

are determined; for each container has to be moved, the 2D coordinates of the platform on which it 

has to be placed are known. Let us determine the order of relocation of containers with a gantry 

crane, minimizing the cost of servicing the entire service slot. 

3. Mathematical model of the problem of relocation order of containers at a 

transshipment yard 

Let               , where       
    

  , be set of coordinates of the geometric centers of 

the relocating containers on source trains and in the storage area, free platforms on target trains 

and in the storage area, n is the number of the containers and the free platforms. We form set 

              , where       
 
   

   is ordered pair of elements from set  , for which the 

container relocation is intended from a source point of coordinates   
 

 to the target point of 

coordinates   
 , m is number of containers have to be moved. 

Set a mixed graph        , where                is set of vertices,       is union 

of the set of arcs   (which correspond to the relocation of containers from place to place) and 

undirected edges   (which correspond to move of the gantry crane without container). Set of edges 



  is constructed in such way that graph           is a complete undirected graph. For graph  , 

we calculate the edge length matrix      based on the distance between the vertices of the graph 

which is calculated according to the Manhattan metric:        
    

 
     

    
 
 ,     

         . 
We firstly choose the initial position of the crane at one of the vertices of the graph   . Then, 

using the description of the crane problem given in (I. I. Melamed et. al., 1989), we construct the 

traveling salesman route in graph  , with the following condition if arcs come out of a vertex and 

edges are connected with it, then you can move along the edge only if you cannot move along the 

arc. In accordance with the approach in (I. I. Melamed et. al., 1989), we transform this problem 

into the traveling salesman problem, see for example (Applegate, 2006). For this purpose, we put 

the lengths of all arcs              of the graph   equal to zero and then combine each pair 

of vertices connected by an arc into one vertex. In this case, the distance between the combined 

vertices is determined as follows. If vertex    is obtained by the union of vertices     and    , 

vertex    is obtained by the union of vertices     and    , then                                  . 

Lastly, we solve the traveling salesman problem with the matrix     using one of the known 

methods, for example, using one of the modern solvers Concorde TSP solver (available at 

http://www.math.uwaterloo.ca/tsp/concorde.html). 

To obtain a solution to the crane problem, and then to solve the ROCTY problem, we return to 

the original graph   and add all arcs from the set   to the found traveling salesman route. The 

move route that is found as a result of solving the crane problem on graph   is the solution of the 

ROCTY problem. 

4. An example of solving the ROCTY problem 

Let                 be set of vertices, where         ,         ,          , 
        ,         ,         ,         ,         ,         ,          ;   
                 be set of arcs, where           ,           ,           ,    
       ,            ; Figure 2.a describes the set of vertices   and set of arcs  , which connect 

pairs of vertices from set  ; Figure 2.b shows the calculated distance matrix      .  

 

a) b)  

Figure 2 – a) Vertices and arcs of the graph, b) Distance matrix       

Combine the vertices connected by arcs:          ;          ;          ; 

         ;           . Distance matrix       for complete graph with vertices   

                 is represented on Figure 3. To solve the traveling salesman problem with a 

matrix       we use a public web service, as a result of which a closed route of moves between the 

vertices is obtained            :                  .  



 

Figure 3 – Distance matrix       

To construct the gantry crane path along the vertices of the original graph  , we add all arcs of 

the set   to the found closed route. The result of such a transformation will be the route of the 

gantry crane over the set of vertices                ,; the final solution for the input dataset is: 

                                 . 

5. Conclusions 

The paper considers the problems of the functioning of the railway transshipment yard. The 

known problems of the transshipment yard scheduling problem (TYSP) and the containers 

placement in rail terminal operations problem (CPRTOP) are presented. Based on their solutions, 

problem of the relocation order of containers at a transshipment yard (ROCTY) is formulated. An 

optimization model of the ROCTY problem is constructed, which can be transformed into the 

traveling salesman problem. Based on the solution of the traveling salesman problem, the solution 

of the ROCTY problem is constructed. A computational experiment is carried out, its results are 

discussed. 

References 

Applegate D., Robert E. Bixby, Vasek Chvátal & William J. Cook, 2006, The Traveling 

Salesman Problem: A Computational Study, Princeton University Press. 

Boysen, Jaehn, and Pesch, 2011, “Scheduling Freight Trains in Rail-Rail Transshipment 

Yards,” Transportation Science, Vol. 45(2), pp. 199–211. 

Boysen N., F. Jaehn, and E. Pesch, 2012, "New bounds and algorithms for the transshipment 

yard scheduling problem", J. Sched., Vol.15, pp. 499–511. 

Cicheński M., and F. Jaehn, and G. Pawlak, and E. Pesch, and G. Singh, and J. Blazewicz, 

2017, "An integrated model for the transshipment yard scheduling problem", Journal of 

Scheduling, Vol. 20, pp.57-65. 

Dotoli M., N. Epicoco, M. Falagariob, D. Palmaa, B. Turchianoa, 2013, “A Train Load 

Planning Optimization Model for Intermodal Freight Transport Terminals: A Case Study”, 

Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 

2013. pp. 3597-3602. 

Grebennik I., R. Dupas, O. Lytvynenko and I. Urniaieva, 2017, “Scheduling Freight Trains in 

Rail–rail Transshipment Yards with Train Arrangements,” International Journal of Intelligent 

Systems and Applications (IJISA), Vol. 9(10), pp.12–19. 

Grebennik I., R. Dupas, I. Urniaieva, N. Kalaida and V. Ivanov, 2019, "Mathematical Model 

of Containers Placement in Rail Terminal Operations Problem," 2019 9th International 

Conference on Advanced Computer Information Technologies (ACIT), pp. 129-132. 

Melamed I. I., S. I. Sergeev, I. Kh. Sigal, 1989, “The traveling salesman problem. Issues in 

theory”, Autom. Remote Control, Vol. 50(9), pp. 1147–1173.  

Sachkov V., 1996, Combinatorial Methods in Discrete Mathematics, Cambridge University 

Press, Cambridge.  

 

http://press.princeton.edu/titles/8451.html

