
Scheduling of battery charging tasks with limited common power
source

Lemański T.1, Różycki R.1, Waligóra G.1, and Węglarz J.1

1Poznan University of Technology, Poland
e-mail: Rafal.Rozycki@cs.put.poznan.pl

Keywords: continuous resource, e-mobility, scheduling, makespan.

1. Introduction
In this work we consider a problem of scheduling battery charging tasks, assuming that the

available amount of shared power is limited, and insufficient to charge all batteries in parallel. The
battery charging process is very complex, and depends mainly on the type of batteries. A very
popular type of battery is a Li-ion battery, used in both portable electronic equipment and electric
cars. There are four main charging periods (Manwell, McGowan(1993)), of which the longest is
the saturation phase. In this phase, along with the passing of time, approximately a linear decrease
in power usage is observed. Therefore, it is justified to model this process using a linear function.

In this work we consider the problem of charging a set of batteries of the same type with
different capacities and degrees of discharge. For simplicity, we will assume that charging each
battery is limited to the saturation phase only.

Moreover, we assume that the number of charging points (a discrete resource) is unlimited,
and the only limited resource is the available power, which by its nature can be allocated to
charging tasks in any amounts from a certain range, i.e. it is a continuous renewable resource
(Błażewicz et al. (2007)). Once started, the charging task cannot be interrupted, as it would impair
the properties of the battery being charged. As one can see, such a non-classical scheduling
problem is non-trivial, because one should specify the order of charging tasks that would lead to
feasible schedules with the best value of the adopted criterion. In our case, this criterion is the
length of the schedule.

In the next part of the work we will present the formulation of the problem, selected properties
of the problem solution, and the results of a computational experiment.

2. Problem formulation
We consider a problem of scheduling n independent, non-preemptable jobs (charging tasks).

Each job requires for its processing some amount of power, and consumes some amount of energy
during its execution. The number of machines (a machine represents a single charging point) is
unlimited and discrete resources have no influence on the final solution. Each job i, i = 1,2,…,n, is
characterized by the amount ei of consumed energy, which represents the size of the job, the initial
power usage P0i, and the power usage function pi(t). This function can be, in general, arbitrary,
however, in this research we assume decreasing linear power usage functions of jobs, as discussed
in the Introduction. Moreover, at the completion of a job its power usage is equal to 0.
Consequently, a job is sufficiently described by only two parameters, namely: ei, P0i, in our
simplified situation. The model of a job is showed on Fig. 1, where si, ci represent the start and
completion times of job i, respectively.

Thus, the assumed job model can be given as follows:

𝑝!(𝑡) = &

0																					𝑓𝑜𝑟	𝑡 < 𝑠!
𝑃"! −

#!"
$"
(𝑡 − 𝑠!)	𝑓𝑜𝑟	𝑠! ≤ 𝑡 ≤ 𝑐!

0																					𝑓𝑜𝑟	𝑡 > 𝑐!

 (1)

Figure 1. Graphical presentation of the job model

Notice that having defined the size ei of a job, its initial power usage P0i, and the power usage

function pi(t), the processing time di of job i can be calculated using the following equation (2):

 𝑑𝑖 = 2𝑒𝑖 𝑃0𝑖⁄ (2)

Thus, we have a set of jobs, from among which each is graphically represented, in the system

of coordinates p and t, by a rectangular triangle of height P0i and length di.
The objective of the problem is to minimize the schedule length. However, the total amount of

power available at a time is limited. We denote by P the total amount of power available at time t.
Obviously, it must hold that 𝑃 ≥ max

!'(,…,+
{𝑃"!}, otherwise no feasible schedule exists. Let 𝑝(𝑡) be

the total power used by all jobs processed at time t, i.e.:

𝑝(𝑡) = < 𝑝!(𝑡)
!∈-#

 where 𝐴𝑡 is the set of jobs processed at time t. Taking into account equation (1) we can write:

𝑝(𝑡) = ∑ ?𝑃"! −
#!"
$"
(𝑡 − 𝑠!)@!∈-# 															(3)	

 and consequently, the considered problem can be mathematically formulated as:

Problem T

minimize	 𝐶/01 = max
!'(,…,+

{𝑐!}	 (4)

subject	to	 𝑐! = 𝑠! + 𝑑! ,			𝑖 = 1,2,… , 𝑛	 (5)

	 ∑ ?𝑃"! −
#!"
$"
(𝑡 − 𝑠!)@!∈-# ≤ 𝑃			for	any	𝑡				

 (6)

Thus, the problem is to find a vector 𝐬 = [𝑠(, 𝑠2, … , 𝑠+] of starting times of jobs that minimizes

the schedule length 𝐶𝑚𝑎𝑥 subject to the above constraints..

3. Properties of solutions
Let us now discuss some properties of the defined problem that can be useful for the developed

solution approach.
Since due to insufficient power, in general it is not possible to start all tasks in parallel, the

question arises - how to construct a schedule of the minimal length. Suppose we know a certain
order of job execution, i.e. there exists a list JL where jobs are ordered according to their
non-decreasing starting times. For each job in position q, q = 2, 3,…, n, on JL the following
condition holds:

𝑠67[9] ≥ 𝑠67[9;(]	, 𝑞 = 2,… , 𝑛

which means that job JL[q] in position q on JL must not start before any of its predecessors on JL.
In this situation, the following property is useful.

 Property 1. For a defined job list 𝐽𝐿, an optimal schedule is obtained by scheduling each

successive job 𝑖 from the list at the earliest possible time when the required amount 𝑃0𝑖 of power
becomes available.

Note that the consequence of Property 1 is that in the optimal schedule, at time 0 one should

run as many initial jobs from the JL list as possible. The moment of starting the next job from the
list with the initial power consumption equal 𝑃"< can be obtained by transforming (3) to the
following formula:

𝑠< =
#!$;#=∑ #!""∈&# =∑ '!"

("
?""∈&#

∑ '!"
("

"∈&#
 (7)

In this formula, the key role is played by the information how many tasks are actually
performed at the moment of starting task j, because some of the tasks may have already been
finished. On the basis of Property 1, the following algorithm can be proposed, which for the
known job order (represented by a particular JL list) determines the optimal moments of starting
consecutive jobs for the considered scheduling criterion.

Algorithm A
Step 1. At time 0 run the maximum number of initial jobs from the JL list enabled by the

available amount of power
Step 2. If any job remains on the JL list, repeat:
Step 2a. Find the moment to start the next job from the JL list from (7) based on information

about jobs being currently performed.
Step 2b. If the calculated starting time is later than the fastest-ending job being completed,

Then: remove the fastest-ending job from the set of jobs being currently performed;
Otherwise: remove the consecutive job from the JL list, put it in the schedule at the

calculated start time, and add to the set of jobs being currently performed.
Return to the beginning of Step 2

Step 3. Take the finish time of the last job as the schedule length.

Algorithm A has the complexity of O(n2) which results from Step 2. The importance of

Property 1 follows from the fact that optimal schedule can be found by using Algorithm A for each
possible job permutation on the JL list. Of course, a full enumeration technique has an exponential
complexity and is computationally inefficient. However, the solutions found in that way can be a
useful reference point for assessing solutions obtained using heuristic algorithms.

Another immediate consequence of the above property is the following natural observation for
the identical jobs case (i.e. P0i = P0 and ei = e for i = 1,2,…,n).

Property 2. For identical jobs, Algorithm A finds an optimal schedule.

It is obvious that for identical jobs the choice of the next job to perform is of no importance –

each job is represented by the same profile of power usage. As a result, the jobs can be scheduled
in an arbitrary order, e.g. according to their increasing indices.

Let us denote by 𝑛(the number of jobs started at the moment 0 and by 𝑠67[+)=(]	the moment
when the next job from JL will be launched (calculated from (7)). The following property may also
be relevant for the situation where, additionally, the number of charging connections is limited.

Property 3. The maximum number of jobs performed at a given moment does not exceed the
number 𝑛(+ 1 + 𝑥, where x is the maximum integer for which the inequality is met:

𝑠67[+)=(] +<
1

𝑛(+ 𝑖

1

!'(

< 1

4. Computational experiment
Simple priority rules can be used to set a suboptimal order of jobs in the JL list. The

parameters that can be taken into account are the following: P0i, di and the ratio P0i/di. Of course,
one can sort the jobs on the list according to non-decreasing or non-increasing values of these
parameters.
In order to examine the suitability of individual priority rules, preliminary computational
experiments were carried out. The assumptions of the experiments were as follows:

- number of jobs, n = 12; available power amount P = 12;
- values of P0i, i = 1, 2,…, n, were chosen randomly according to discrete uniform

distribution from the set {1,.., P0max}, and P0max took the following two values in particular
groups of experiments: 3 (a large number of jobs run in parallel in the resulting schedule),
8 (a small number of jobs executed in parallel in the resulting schedule)

- values di, i = 1, 2,…, n, were chosen randomly according to discrete uniform distribution
from the set {1,.., dmax}, and dmax took the following two values in particular groups of
experiments: 12 (short jobs) and 50 (long jobs).

Ten test instances were generated for each case. Both: non-decreasing and non-increasing values
of the chosen parameters were tested. For each sequence of jobs in JL, the final schedule was
generated by using Algorithm A. The results obtained in this way were compared to optimal
solutions obtained by the full enumeration technique (all possible permutations of n jobs on a JL
list) and with random sequence of jobs on JL. The obtained results of the experiment show that
under the adopted assumptions for the considered scheduling problem, the best rule for ordering
jobs on JL is according to non-increasing order of di. The representative results for the experiment
with P0max = 8 and dmax = 12 are shown in Table 1, where average (Dave) and maximum (Dmax)
deviations from the optimal solutions are presented for each tested rule.

Table 1. Exemplary results of the computational experiment

Rule: random ­P0i ¯P0i ­di ¯di ­P0i/di ¯ P0i/di
Dave 0.29 0.23 0.34 0.32 0.06 0.11 0.3
Dmax 0.58 0.43 0.54 0.5 0.14 0.22 0.5

5. Conclusions
In this work we have considered a problem of scheduling non-preemptable and independent

jobs with power demands linearly decreasing with time in order to minimize the schedule length.
We have shown that in an optimal schedule each job should be started as soon as the required
power amount becomes available. As a result, in order to find a globally optimal schedule, all
sequences of jobs have to be examined, in general. Thus, some priority rules can be applied to look
for an optimal job permutation. We have performed computational tests to examine a few simple
priority rules. They have shown that ordering the jobs according to their non-increasing processing
times leads to the best suboptimal solutions.

References
Manwell J. F., McGowan J. G.,1993, “Lead acid battery storage model for hybrid energy
systems”, Solar Energy, vol. 50, pp 399 -405, 1993.
Błażewicz J., Ecker K., Pesch E., Schmidt G., Sterna M., Węglarz J., “Handbook on
Scheduling: from Theory to Applications”, Springer, Heidelberg, 2019.

