
A Generation Scheme for the Resource-Constrained

Project Scheduling Problem with Partially Renewable

Resources and Time Windows

Mareike Karnebogen and Jürgen Zimmermann

Clausthal University of Technology, Germany
mareike.karnebogen@tu-clausthal.de, juergen.zimmermann@tu-clausthal.de

Keywords: Project scheduling, Partially renewable resources, RCPSP/max,π

1 Introduction

Partially renewable resources are a generalized form of renewable and non-renewable
resources. For each partially renewable resource a capacity is given, which only applies
to predetermined time periods. This type of resources was first mentioned by Böttcher et

al. (1996) in the context of projects restricted by precedence constraints (RCPSP/π). In
this paper the resource-constrained project scheduling problem with partially renewable
resources and time windows (RCPSP/max,π) is considered, which for example allows to
take more flexible working arrangements in case of deployment planning into account. The
RCPSP/max,π is a generalization of the RCPSP/π and thus hard to solve (NP-hard).
Therefore, we present a generation scheme for the RCPSP/max,π to construct feasible
solutions within a short period of time. Section 2 contains a general description of the
problem and a mixed-integer linear formulation (MILP). In Section 3 the developed gener-
ation scheme is presented. Finally, Section 4 includes a preliminary performance analysis,
in which the results of our generation scheme are compared to results obtained by IBM

CPLEX applied on the MIP model of Watermeyer et al. (2018).

2 Problem description

The activities and temporal constraints of the resource-constrained project scheduling
problem with time windows and partially renewable resources (RCPSP/max,π) can be
represented graphically as an activity-on-node network. The nodes correspond to the ac-
tivities of the project V = {0, 1, . . . , n+1} consisting of the fictitious project start 0, n real
activities, and the fictitious project completion n + 1. Each activity i ∈ V has a determin-
istic processing time pi ∈ Z≥0 during which the activity can not be interrupted. General
temporal constraints between two activities i, j ∈ V are represented by arcs 〈i, j〉 between
the corresponding nodes of the network. The arc weight δij ∈ Z of an arc 〈i, j〉 ∈ E corre-
sponds to a minimal time lag between the start times of activity i and activity j which has
to be satisfied. The maximal project duration given by d̄ can be represented by an arc from
n + 1 to 0 weighted with −d̄. As it is common practice in literature, let dij be the longest
distance from node i ∈ V to node j ∈ V in the project network which can be calculated by
the Floyd-Warshall tripel algorithm. Then ESi = d0i and LSi = −di0 are the earliest and
latest start time of activity i ∈ V , respectively, and Ti = {ESi, ESi + 1, ..., LSi} implies all
time-feasible integer start time points of activity i.

When executing the activities a set of partially renewable resources R = {1, . . . , m}
have to be observed. Each activity i ∈ V has a resource demand rik ∈ Z≥0 for each
period it is executed. In addition each partially renewable resource k ∈ R has a resource
capacity Rk, which only applies to a subset of not necessarily consecutive time periods of

the given planning horizon Πk ⊆ {1, 2, . . . , d̄}. For all time periods not contained in Πk it
is assumed that the capacity is not restricted. Obviously, the relevant composite resource
consumption of activity i of resource k depends on the number of time periods activity i

is in execution during the capacitated time periods of resource k and can be calculated by
rc

ik(Si) = |{Si + 1, Si + 2, . . . , Si + pi} ∩ Πk| · rik (Watermeyer et al. 2018).
The objective of our problem is to find a time- and resource-feasible schedule S =

(S0, S1, . . . , Sn+1) which minimizes the project duration Sn+1. A schedule is called time-
feasible, if Sj −Si ≥ δij ∀〈i, j〉 ∈ E, what means that all temporal constraints are observed.
To obtain a resource feasible schedule the accumulated resource demand occurring across
all capacitated periods must not exceed Rk for any partially renewable resource k ∈ R.
Formally, the RCPSP/max,π described above can be formulated as follows:

Minimize f(S) = Sn+1

subject to Sj − Si ≥ δij (〈i, j〉 ∈ E)

S0 = 0
∑

i∈V
rc

ik(Si) ≤ Rk (k ∈ R)

Si ∈ Z≥0 (i ∈ V)

3 Generation scheme

Algorithm 1 shows our generation scheme which is based on the generation scheme
for the RCPSP/max developed by Franck et al. (2001). Let C be the set of scheduled
activities. In the initialization process project start 0 is fixed at t = 0 and appended to
C. Also counter u is set to zero. In the main step for each partially renewable resource
k ∈ R and each activity not scheduled so far the minimal composite demand rmin

ik and the
maximal composite demand rmax

ik is calculated. As well as the remaining capacity RCk

Algorithm 1 Generation Scheme

1: C := {0}, S0 := 0, u := 0
2: rik(t) for all i ∈ V and k ∈ R and t ∈ Ti

3: while C 6= V do

4: rmin
ik := mint∈Ti

rik(t) for all i ∈ V \ C and k ∈ R
5: rmax

ik := maxt∈Ti
rik(t) for all i ∈ V \ C and k ∈ R

6: RCk := Rk −
∑

i∈V \C
rmin

ik −
∑

i∈C
rik(Si) for all k ∈ R

7: for all k ∈ R do

8: if RCk >
∑

i∈V \C
rmax

ik then R = R \ {k}

9: E := {i ∈ V \ C | P red≺D (i) ⊆ C}
10: priority based choice of an activity j∗ ∈ E to be scheduled next
11: Zj∗ := {t ∈ Tj∗ \ T abuj∗ |rj∗kt − rmin

j∗k ≤ RCk for all k ∈ R and
mink∈R{rj∗kt − rj∗kτ } < 0 for all τ ∈ Tj∗ |τ < t}

12: if Zj∗ = ∅ then u := u + 1 and Unschedule

13: else

14: priority based choice of a point in time t∗ ∈ Zj∗ as start time of j∗

15: Sj∗ := t∗, C := C ∪ {j∗}
16: for all h ∈ V \ C do (∗ update ESh and LSh ∗)
17: ESh := max(ESh, Sj∗ + dj∗h)
18: LSh := min(LSh, Sj∗ − dhj∗)

19: return S

which results from Rk minus the consumption of all scheduled activities i ∈ C as well as the
minimal necessary resource consumption rmin

ik of all not yet scheduled activities i ∈ V \C. If
RCk outruns the maximal potential resource consumption rmax

ik of all activities i ∈ V \ C,
the resource has no longer to be taken in consideration. Afterwards, the eligible set E
containing all activities i ∈ V \ C whose immediate predecessors regarding the distance
order ≺D are scheduled is established (Neumann et al. 2003). An activity j∗ ∈ E is selected
based on a certain priority rule and the related set Zj∗ of resource- and time-feasible start
times which are not dominated by an earlier feasible start time is determined. If Zj∗ = ∅
an unscheduling step is performed and counter u is increased by one. Otherwise a point in
time t∗ ∈ Zj∗ is chosen based on a priority rule and assigned as Sj∗ while j∗ is added to C.
Finally, for all unscheduled activities i ∈ V \ C ESi and LSi are updated. This procedure
is repeated until all activities i ∈ V are scheduled time- and resource-feasible.

Algorithm 2 Unschedule

1: if u ≥ û then terminate

2: if ESj∗ 6= d0j∗ then U := {i ∈ C | ESj∗ = Si + dij∗ }

3: if LSj∗ 6= −dj∗0 then U := U ∪ {i ∈ C | LSj∗ = Si − dj∗i}

4: if U := ∅ then U := {i ∈ C | min {rikSi
, rj∗k} > 0 for at least one k ∈ R}

5: for all i ∈ U do

6: C := C \ {i}
7: T abui = T abui ∪ {Si}

8: T abuj∗ := ∅
9: for all i ∈ C with Si > minh∈U Sh do

10: C := C \ {i}

11: for all h ∈ V \ C do

12: ESh := d0h

13: LSh := −dh0

14: for all i ∈ C do

15: ESh := max(ESh, Si + dih)
16: LSh := min(LSh, Si − dhi)

Algorithm 2 shows the unscheduling step which is performed if no time- and resource-
feasible starting point of activity j∗ exists. In case u is higher than a prescribed maximal
number of unscheduling steps û the algorithm terminates. Otherwise a set U of activities
i ∈ C which have to be unscheduled and rescheduled in order to obtain a feasible schedule
is determined. For this purpose, we first examine if one or more activities i ∈ C restrict
the scheduling timeframe of the chosen activity j∗ i.e. increases ESj∗ or decreases LSj∗ .
If U = ∅, we determine all those activities i ∈ C using some resources k ∈ R activity
j∗ also requires for execution. Afterwards, all activities i ∈ U are removed from C as
well as all activities i ∈ C with Si > minh∈U Sh because some of them could possibly be
executed earlier. Moreover, for all activities i ∈ U the current start point Si is forbidden
by storing in the tabu-list Tabui whereas Tabuj∗ is cleared. Points in time t ∈ Tabui can
not be choosen as start time of activity i in the scheduling phase of the generation scheme
(compare Algorithm 1 line 11). Finally, for all activities i ∈ V \ C the values for ESi and
LSi are recalculated.

4 Performance analysis

In order to evaluate the performance of our generation scheme we conduct a compu-
tational study performed on an Intel Core i7-7700K CPU with 4.2 GHz and 64 GB RAM
under Windows 10. The generation scheme was coded in FICO R© Xpress Optimization. The

instance set we used was established by Watermeyer et al. (2018) including 729 instances
with 10, 20, and 50 activities and is based on the well-known UBO instances of Schwindt
(1998) extended by 30 partially renewable resources with varying specifications.

Within the computational study for the choice of the activity scheduled next the pri-
ority rules LSTd (smallest "Latest Start Time dynamic" first) and TFd (smallest "Total
Float dynamic" first), whereas for the choice of the scheduling point in time the objectives
Tmin (earliest "Start Time"), RD (minimal total "Resource Demand") and RL ("Resource
Leveling") were tested. Starting with d̄ as the RCPSP/max upper bound

∑
〈i,j〉∈E |δij |,

we perform a preprocessing to specify d̄ including two deterministic runs with the priority
rules LSTd-Tmin and TFd-Tmin. In the main step for each of the six combinations of the
priority rules 100 runs were conducted per instance, whereby the choice of j∗ and t∗ is
taken randomly based on selection probabilities. If a feasible solution with Sn+1 < d̄ is
found, d̄ is set to Sn+1 − 1.

Table 1 shows preliminary results for all combinations of the established priority rules.
Displayed are the percentage of instances (%feas) our generation scheme was able to find
a feasible solution, the average percentage gap (%Gap) with regard to the best solution
of the MIP found in at most 3.600 seconds and the average computing time (∅CPU) in
seconds required per run.

Table 1. Preliminary results of the computational study

UBO10π UBO20π UBO50π

Tmin RD RL Tmin RD RL Tmin RD RL

%feas 99.04 99.59 99.45 96.16 97.39 97.94 95.58 96.25 96.28
LSTd %Gap 1.36 1.28 1.40 5.34 5.28 4.92 18.79 19.72 20.86

∅CPU 0.63 0.61 0.61 2.42 2.09 2.05 35.71 32.59 33.35

%feas 98.90 99.45 99.60 96.85 97.40 97.94 95.89 96.38 96.50
TFd %Gap 1.40 1.47 1.36 5.89 5.70 5.73 18.81 19.78 21.07

∅CPU 0.62 0.61 0.60 2.31 1.96 1.94 34.28 31.22 31.37

The results show that our generation scheme is able to generate feasible solutions for
nearly all tested instances in particular by using the resource-based priority rules RD and
RL. Note, that for some instances of UBO50π the generation scheme is able to find better
solutions than the MIP in one hour. For the tested instances the quality of the solutions
generated with the priority rules LSTd and TFd is very similar. For smaller instances the
resource-based rules RD and RL mostly outperform the time-based rule Tmin, whereas for
larger instances it turns into its opposite. Besides higher gaps it can be observed that the
computation time increases by a growing number of activities. In a next step the generation
scheme should be coded in C++ and further priority rules should be examined.

References

Álvarez-Valdés R., E. Crespo, J.M. Tamarit and F. Villa, 2008, “GRASP and path relinking for project scheduling
under partially renewable resources”, European Journal of Operational Research, Vol. 189, pp. 1153-1170.

Böttcher J., A. Drexl, R. Kolisch, F. Salewski, 1996, “Project scheduling under partially renewable resource con-
straints”, Technical Report, Manuskripte aus den Instituten für Betriebswirt-schaftslehre 398, University
of Kiel.

Franck B., K. Neumann and C. Schwindt, 2015, “Truncated branch-and-bound, schedule-construction, and
schedule-improvement procedures for resource-constrained project scheduling”. OR Spektrum, Vol. 23,
pp. 297-324.

Neumann K., C. Schwindt, J. Zimmermann, 2003, “Project scheduling with Time Windows and Scarce Resources”,
ed.2, Springer, Berlin.

Schirmer A., 1999, “Project scheduling with scarce resources: models, methods and applications”, Dr. Kovač,
Hamburg.

Schwindt C., 1998, “Generation of resource-constrained project scheduling problems subject to temporal con-
straints”, Technical Report WIOR-543, University of Karlsruhe.

Watermeyer K. and J. Zimmermann, 2018, “A Branch-and-Bound Procedure for the Resource-Constrained Project
Scheduling Problem with Partially Renewable Resources and Time Windows”, Proceedings of the 16th

International Conference on Project Management and Scheduling, Rom, pp. 259-262.

