
1

Linear inequalities for neighborhood based dominance
properties for the common due-date scheduling problem

Anne-Elisabeth Falq1, Pierre Fouilhoux1 and Safia Kedad-Sidhoum2

1 Sorbonne Université, CNRS, LIP6, 4 place Jussieu, 75005 Paris, France
anne-elisabeth.falq@lip6.fr, pierre.fouilhoux@lip6.fr

2 CNAM, CEDRIC, 292 rue Saint Martin, 75003 Paris, France safia.kedad_sidhoum@cnam.fr

Keywords: just-in-time scheduling, dominance properties, integer linear programming.

1 The common due-date problem

We consider a set of n tasks J that have to be processed non-preemptively on a sin-
gle machine around a common due-date d. Given for each task j ∈ J a processing time
pj and a unitary earliness (resp. tardiness) penalty αj (resp.βj), the problem denoted
1 | |

∑
αj [d−Cj]++βj [Cj−d]+, aims at finding a feasible schedule that minimizes the sum

of earliness-tardiness penalties.

When d≥
∑
pj , the due date is said unrestrictive, and the problem is NP-hard, even

if penalties are symmetric, i.e. αj=βj for all j∈J (Hall and Posner 1991). In the general
case, the problem is NP-hard, even if the task penalties are equal, i.e. αj = βj for all
j∈J (Hoogeveen and van de Velde 1991). In both cases to the dynamic programming algo-
rithms proposed in (Hall and Posner 1991, Hoogeveen and van de Velde 1991). A heuristic
method together with a benchmark is provided in (Biskup and Feldmann 2001). These
instances are efficiently solved by an exact method proposed in (F. Sourd 2009).

In this work, we focus on the problem with an unrestrictive due-date. We propose a
compact integer linear program modeling it. To improve the efficiency of this formulation,
we propose a new type of linear inequalities translating some neighborhood based domi-
nance properties. Moreover, for sake of brevity, we assume that the α-ratios αj/pj for j∈J
are different, as well as the β-ratios βj/pj . Nevertheless, the following results are still true
without this assumption.

2 A compact linear formulation based on structural dominance properties

In a given schedule, a task is early (resp. tardy), if it completes before or at d (resp.
after d), and a task is on-time if it completes exactly at time d. A schedule having an on-
time task is said V-shaped, if early (resp. tardy) tasks are ordered by increasing α-ratios
(resp. decreasing β-ratios). A schedule is called a block if it presents no idle time.

For the unrestrictive case, V-shaped blocks having an on-time task are dominant, which
means that there exists an optimal solution within this set of schedules (Hall and Posner
1991). Using this dominance property, a schedule can be completely described by the
partition between early and tardy tasks.
Indeed, if the set of early tasks E is given, the set of tardy tasks T = J \ E is also fixed,
and the earliness eu (resp. the tardiness tu) of any task u∈J , can be deduced as follows:

eu=

{
p
(
A(u) ∩ E

)
if u∈E

0 otherwise tu=

{
p
(
B(u)∩T

)
if u∈T

0 otherwise

where p(S)=
∑
j∈S

pj for any S⊆J , A(u)=
{
j∈J | αj

pj
> αu

pu

}
and B(u)=

{
j∈J | βj

pj
> βu

pu

}
.

2

Note that, for each task u, the sets A(u) and B(u) are defined from the instance, so
they can be pre-computed. We introduce, for each u ∈ J , Ā(u) = J \

(
A(u)∪{u}

)
and

B̄(u)=J \
(
B(u)∪{u}

)
.

Let us consider a boolean variable δj for each j ∈ J indicating if task j is early. i.e.
a vector δ ∈ {0, 1}J encodes the partition

(
E = {j∈J | δj=1}, T = {j∈J | δj=0}

)
. Al-

though these variables are sufficient to encode solutions, additional boolean variables are
introduced to replace quadratic terms appearing in the earliness and tardiness expression.
Since these terms are only products of boolean variables, we use the classical linearization
from (R. Fortet 1959) : for each couple in J< =

{
(i, j)∈J2 | i<j

}
, we add a new boolean

variable Xi,j and the four following inequalities coupling it with variables δi and δj .

∀(i, j)∈J<, Xi,j > δi−δj (1)
∀(i, j)∈J<, Xi,j > δj−δi (2)
∀(i, j)∈J<, Xi,j 6 δi+δj (3)
∀(i, j)∈J<, Xi,j 6 2−(δi+δj) (4)

If (δ,X)∈{0, 1}J× {0, 1}J<

satisfies inequalities (1)−(4), then Xi,j indicates if δi 6=δj ,
and more importantly δiδj=δi+δj−Xi,j and (1−δi)(1−δj)=2−δi−δj−Xi,j . The objective
function reduces then to the following linear function:

f(δ,X) =
∑
u∈J

αu

 ∑
j∈A(u)

pj
δj+δu−Xj,u

2

+ βu

(1−δu) pu +
∑

j∈B(u)

pj
2−δj−δu−Xj,u

2


By introducing the polyhedron P =

{
(δ,X) ∈ [0, 1]J× [0, 1]J

< | (1)−(4)
}
, and denoting

int(P) its integer points, the problem can be formulated as a linear integer program (A-E.
Falq, P. Fouilhoux and S. Kedad-Sidhoum 2019):

(F) min
(δ,X)∈int(P)

f(δ,X)

Since it has exactly n+n(n−1)/2 boolean variables and 4n(n−1)/2 inequalities, (F)
is a compact formulation. Note that no linear inequalities are needed to ensure the task
non-overlapping since it is handled through the encoding.

3 Linear inequalities for neighborhood based dominance properties

It is common, in local search procedures, to slightly change a solution S to obtain a
new one S ′, called a neighbor of S. If the neighbor S ′ is better, (i.e. if it has a smaller
total penalty in our case), we say that S is dominated (by S ′), it follows that S cannot be
optimal.

This simple observation leads to a dominance property for any neighborhood N
which associates to a solution the set of its neighbors. A solution S is said N -dominated
if there exists S ′ ∈ N (S) which is strictly better than S. Hence solutions which are not
N -dominated are dominant.

Here, as a schedule is encoded by a partition (E, T) between early and tardy tasks, we
consider two operations providing a neighbor (E′, T ′):
- the insertion operation, which consists in inserting an early task on the tardy side i.e.
E′=E\{u} and T ′=T∪{u} for some u∈E, or conversely in inserting a tardy task on
the early side i.e. E′=E∪{u} and T ′=T \{u} for some u∈T ,

- the swap operation, which consists in inserting an early task on the tardy side while
a tardy task is inserted on the early side i.e. E′=E\{u}∪{v} and T ′=T \{v}∪{u} for
some (u, v)∈E×T .

3

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

|

u

S ′

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

|

u

Fig. 1. Insertion of an early task u on the tardy side of a schedule

Figure 1 illustrates the insertion of an early task on the tardy side. Let us fix a task
u ∈ J . The top part of the scheme shows the general form of an arbitrary schedule S in
which u is an early task. The bottom part shows the general form of the neighbor S ′ of
S obtained by inserting of u on the tardy side. Considering solutions as schedules (rather
than partitions) allows to easily express the penalty variation between S and S ′ as follows:

−αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+ pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(u)∩T

)
Using this the penalty variation expression, we produce a linear inequality
• which cuts all schedules in which u is early and which are dominated by the schedule

obtained by inserting u on the tardy side,
• which is valid for any other schedule, in particular for all optimal schedules since they

are non-dominated.

Two elements allow us to produce such an inequality. First, assuming that u is early in
the schedule encoded by a vector (δ,X) is equivalent to assume that the linear term 1−δu
equal zero. Secondly, if (δ,X) encodes a schedule where u is early, the penalty variation
induced by the insertion of u on the tardy side, denoted ∆av

u (δ) is linear in δ:

∆av
u (δ)=−αu

∑
i∈A(u)

pi δi + βu
∑

i∈B(u)

pi(1−δi) + βupu + pu

(∑
i∈B̄(u)

βi (1−δi)−
∑

i∈Ā(u)

αi δi

)
and bounded by a constant:

∀δ∈{0, 1}J , −∆av
u (δ)6Mav

u where Mav
u =αu p

(
A(u)

)
− βupu + pu α

(
Ā(u)

)
We finally deduce the following inequality, which translates the dominance of the set of
schedules non-dominated by the insertion of u:

∆av
u (δ)>−Mav

u (1−δu) (5u)

Following the same approach, we produce a similar inequality (6u) cutting exactly the
schedules in which u is tardy, and dominated by inserting u on the early side. We also
produce an inequality (7u,v), for given v 6= u, cutting exactly the schedules in which u is
early, v is tardy, and dominated by swapping u and v.

Note that inequalities of family (5), (6) and (7) are not standard reinforcement inequal-
ities. Classically, valid inequalities are added to cut extreme points which are not integer
and then do not encode a feasible solution, since they correspond to a too optimistic value.
On the contrary, these dominance inequalities cut some integer points which encode feasible
solutions because they correspond to dominated, and then non-optimal, schedules.

4

4 Exact resolution and rounding heuristic

Let us introduce the polyhedron reinforced by the previous dominance inequalities
P ′ =

{
(δ,X) ∈ [0, 1]J× [0, 1]J

< | (1)−(4), ∀u∈J, (5u), (6u), ∀(u, v)∈J<, (7u,v), (7v,u)
}
,

and the associated formulation : (F ′) min
(δ,X)∈int(P ′)

f(δ,X).

Theoretically, we know that both formulations (F) and (F ′) give the same value.To
compare them from a practical point of view, we implement them using a linear solver
(CPLEX version 12.6.3.0), and test them on the benchmark proposed by (Biskup and
Feldmann 2001). Under a time limit of one hour, formulation (F) using all CPLEX fea-
tures allows to exactly solve instances up with [50] tasks, while formulation (F ′) without
any CPLEX features allows to exactly solve instances up with [150] tasks.

Although designed for exact solving, (F) (resp. (F ′)) can be used to obtain a lower
bound, by solving its linear relaxation denoted F̄ (resp. F̄ ′), and to obtain an upper bound
together with a feasible schedule, by rounding the fractional solution of F̄ (resp. F̄ ′).

A first rounding procedure consists in rounding vector δ and then fixing X accordingly
so that we obtain x̂∈ int(P). We then obtain a feasible schedule and an upper bound UB1
for (F) (resp. UB1’ for (F ′)). Note that x̂ can violate some dominance inequalities, then
x̂ 6∈P ′ (that implies in particular that CPLEX does not accept x̂ as an incumbent solution).
So we add a repairing phase, which consists in applying swap and insert operations as
long as it is possible, i.e.while an insert inequality or a swap inequality is violated, mean-
ing that an insert or a swap operation strictly improves the solution. We finally obtain a
non-dominated schedule and a better upper bound UB2 (resp. UB2’).

Note that this repairing phase can also be applied to the heuristic solution provided by
the Biskup and Feldmann algorithm (Biskup and Feldmann 2001), which possibly trans-
forms their upper bound UB3 in a better upper bound UB4. We compare experimentally
these four upper bounds and show that UB2, UB2’ and UB4 are very strong : they are
exact for 45 over 50 instances (of size up to 150), and the average gap to the optimal value
for the 5 other instances is less than 0,1%.

References

D. Biskup and M. Feldmann, 2001, "Benchmarks for scheduling on a single machine against
restrictive and unrestrictive common due dates", Computers and operations research, 28:787–
801

A-E. Falq, P. Fouilhoux and S. Kedad-Sidhoum, 2019, Mixed integer formulations using natural
variables for single machine scheduling around a common due date. CoRR, abs/1901.06880,
2019.

R. Fortet, 1959, "L’Algèbre de Boole et ses applications en Recherche Opérationnelle", Cahiers
du Centre d’Études en Recherche Opérationnelle, 4:5

N.G. Hall and M.E. Posner, 1991, "Earliness-tardiness scheduling problems, I: weighted deviation
of completion times about a common due date", Operations Research, 39(5):836–846.

J.A. Hoogeveen and S.L. van de Velde, 1991, "Scheduling around a small common due date",
European Journal of Operational Research, Vol 55:237–242,

F. Sourd, 2009, "New exact algorithms for one-machine earliness-tardiness scheduling", INFORMS
Journal on Computing, 21(1):167–175

	Linear inequalities for neighborhood based dominance properties for the common due-date scheduling problem
	 Anne-Elisabeth Falq , Pierre Fouilhoux and Safia Kedad-Sidhoum

