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1 Introduction

In the routing open shop problem a fleet of mobile machines has to process a set of
immovable jobs located at the nodes of some transportation network, described by an
undirected edge-weighted graph G = 〈V ;E〉, where each node contains at least one job,
and weight dist(u, v) represents travel times between nodes u and v. Each machine Mi has
to perform an operation Oji on each job Jj in open shop environment, the processing times
pji are given. All the machines start from the same node v0 referred to as the depot and
have to return to the depot after processing all the job. No restriction on the machines
traveling are in order: any number of machines can travel over the same edge of the network
simultaneously, machines are allowed to visit each node multiple times. However, machine
has to reach a node prior to be able to process jobs located there. The goal is to minimize
the makespan Rmax, i.e. the completion time of the last machine’s activity (either traveling
back to the depot or performing an operation on a job located at the depot). The problem
is clearly a generalization of the metric traveling salesman problem and therefore is NP-
hard in strong sense even for single machine. On the other hand, it generalizes the classical
open shop problem, which is well-known to be NP-hard for the case of three and more
machines, and is polynomially solvable for the two-machine case (Gonzalez T.F. and Sahni
S. 1976). Surprisingly, the routing open shop is NP-hard even in the two-machine case on
the transportation network consisting of at least two nodes (including the depot) (Averbakh
I. et. al. 2006). We use notation ROm||Rmax for the routing open shop with m machines.
Optional notation G = X in the second field is used in case we want to specify the structure
of the transportation network, with X being the name of the structure (e.g. Kp or tree). A
set of instances of the ROm|G = X|Rmax problem is denoted by IXm (or Im for a general
case of unspecified X).

The routing open shop problem was introduced by Averbakh I. et. al. (2005). In our
research we utilize the standard lower bound on the optimal makespan from the same paper:

R̄ = max

{
`max + T ∗,max

v∈V
(dmax(v) + 2dist(v0, v))

}
. (1)

Here `max = max
i

n∑
j=1

pji is the maximum machine load, dmax(v) = max
j∈J (v)

(
m∑
i=1

pji

)
is

the maximum length of job from node v, with J (v) being the set of jobs located at v, while
T ∗ is the TSP optimum on G. The problem under research is so-called optima localization
and can be described as follows: how much (by what factor) can optimal makespan differ
from the standard lower bound R̄ for a given class of instances K? More precisely, for some
class K we want to find

α (K) = sup
I∈K

α(I) = sup
I∈K

R∗max(I)

R̄(I)
.
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Here R∗max(I) and R̄(I) denote optimal makespan and the value of R̄ for I, respectively,
and α(I) is referred to as the abnormality of instance I.

It is known that for the classical two-machine open shop (which can be denoted as
RO2|G = K1|Rmax for consistency) optimal makespan always coincides with the standard
lower bound, therefore α

(
IK1
2

)
= 1 (Gonzalez T.F. and Sahni S. 1976). It is not the

case for the three-machine problem, where optimal makespan can reach as much as 4
3 R̄

(Sevastyanov S.V. and Tchernykh I.D. 1998). The value of α
(
IK1
4

)
is still an open question,

however we have no evidence that it is greater than 4
3 . Needless to say, that similar research

for the routing open shop is probably harder even for m = 2, because the value α
(
IKp
m

)
might depend both on m and p. However, it was recently established that α

(
IK2
3

)
= 4

3

(Chernykh I. and Krivonogova O. 2020).
Current research for two machines up to the moment is as follows:

1. α
(
IK2
2

)
= 6

5 (Averbakh I. et. al. 2005);

2. α
(
IK3
2

)
= 6

5 (Chernykh I. and Lgotina E. 2016);

3. α (Itree2 ) = 6
5 (Krivonogova O. and Chernykh I. 2019).

This paper addresses a natural question: how to stop this infinite series of incremental
results and still reach an ultimate goal of discovering the general value α (I2).

2 Instance transformations

The research of some extremal (with respect to the standard lower bound) properties of
the set of instances (such as optima localization) is often based on some instance transfor-
mation procedures. Suppose we have some transformation which obtains instance Ĩ from I.
Such a procedure is called reversible if any feasible schedule for Ĩ can be treated as a feasi-
ble schedule for I. Reversibility means that R∗max(Ĩ) > R∗max(I). The transformation I → Ĩ
is referred to as valid if it preserves the standard lower bound: R̄(Ĩ) = R̄(I). Obviously
for any valid and reversible transformation I → Ĩ we have α(Ĩ) > α(I). That observation
serves as a foundation for the following approach to investigate the abnormality α(I) for
some set of instances:

1. Describe a valid reversible transformation on I which simplifies the instance (i.e. re-
duces number of jobs to some constant, or simplifies the structure of the transportation
network).

2. Describe the image Ĩ of I under that transformation. Find α(Ĩ).

There is a well-known transformation which reduces the number of jobs, referred to as job
aggregation or job grouping. The idea is to combine a set of jobs into a single one adding
up the processing times independently for each machine. Such a procedure was used, e.g.,
in (Sevastyanov S.V. and Tchernykh I.D. 1998) for the classic open shop problem, and in
(Chernykh I. and Lgotina E. 2016, Krivonogova O. and Chernykh I. 2019) for the two-
machine routing open shop. While the procedure is clearly reversible, its validity has to be
maintained explicitly. For example, it is possible to perform valid job aggregation for any
instance of Om||Cmax so that the resulting instance would contain at most 2m − 1 jobs
(Sevastyanov S.V. and Tchernykh I.D. 1998). As for RO2||Rmax, one can aggregate jobs
in such a valid manner that every node (except for at most one) has a single job, and the
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“exceptional” one (if any) contains at most 3 jobs (Chernykh I. and Lgotina E. 2016). Such
an exceptional node v is referred to as overloaded :

∆(v) =
∑

j∈J (v)

∑
i

pji > R̄− 2dist(v0, v).

However, it would be of the most interest to describe some valid reversible transforma-
tion to simplify the structure of G. An example of such a reduction is so-called terminal
edge contraction, which can be described as follows. Suppose G contains a terminal node
v 6= v0 with a single job Jj in J (v). Let u be the node adjacent to v, and τ = dist(u, v).
We translate the job Jj to the node u, increase its operations processing times by 2τ ,
and eliminate the obsolete node v. Such a transformation is reversible, as one can treat
the processing of a new operation Oji as a concatenation of traveling of Mi from u to v,
processing of the initial operation and traveling back to u. It is proved in (Chernykh I.
and Lgotina E. 2019) that for any instance I ∈ I2 one can perform a valid transformation
I → Ĩ such that the transportation network in Ĩ contains at most two terminal nodes. This
helps to efficiently reduce any tree to a chain. On the other hand a graph might have a
complex structure even without terminal edges. Below we describe a new approach to the
instance reduction which allows to significantly simplify the structure of a transportation
network preserving the standard lower bound R̄.

Consider an instance I ∈ I2. Let ∆ =
∑
i,j

pji be the total load if I. Note that (1) implies

∆ 6 2`max 6 2(R̄− T ∗). (2)

Let cycle σ be an optimal solution of the underlying TSP. Any edge e /∈ σ is referred to
as chord. A chord e is referred to as critical if removing it from G increases the standard
lower bound R̄.

Lemma 1. Any instance I ∈ I2 contains at most one critical chord, which is incident to
the depot v0.

Proof. Note that the definition (1) does not depend on any distance between two non-
depot nodes, therefore a chord may be critical only if it is incident to v0. Suppose a chord
[v0, v] is critical and τ is the new distance between v0 and v after removing e from G. Then
R̄ < 2τ + dmax(v) 6 T ∗+ dmax(v). Assume we have another critical chord [v0, u], therefore
R̄ < T ∗ + dmax(u). Combining those two inequalities we obtain 2R̄ < dmax(u) + dmax(v) +
2T ∗ 6 ∆+ 2T ∗. Lemma is proved by contradiction with (2). ut
Lemma 2. Let I ∈ I2, node v is overloaded and chord [v0, u] is critical. Then u = v.

Proof. We have ∆(v) > R̄ − 2dist(v0, v) > R̄ − T ∗ and dmax(u) > R̄ − T ∗. Assume u 6= v,
then ∆ > ∆(v) + dmax(u) > 2(R̄− T ∗). Lemma is proved by contradiction with (2). ut
Theorem 1. Let I ∈ I2 such that the depot v0 is overloaded. Then α(I) = 1.

Proof. Note that ∆(v0) > R̄. It follows from Lemma 2 that I contains no critical chords,
therefore eliminating all the chords is a valid (and reversible) transformation of I. Now
let us replace all the jobs except the ones in the depot with a new single job J ′ with
operations processing times p′i = T ∗+

∑
Jj /∈J (v0)

pji, and locate J ′ at v0. Obsolete nodes (all

except v0) can now be removed from G, therefore G is transformed into a single-node graph
and instance is reduced to the classic O2||Cmax problem, for which we know that optimal
makespan coincides with the standard lower bound. Such a transformation is reversible, as
soon as we can treat the processing of operations of job J ′ as traveling along the optimal
cycle and processing the jobs on the way. It is therefore sufficient to prove the validity of
the transformation:

∑
i p
′
i = 2T ∗ +∆−∆(v0) 6 2T ∗ + 2(R̄− T ∗)−∆(v0) < R̄. ut
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Now we describe a chain contraction transformation. Suppose G contains a chain C =
(v − v1 − v2 − . . . − vk − u), all the nodes v1, . . . , vk are of degree 2, and none of them is
the depot. Let τ be the length of chain (the distance between v and u along C) and J (C)
is the set of jobs from nodes v1, . . . , vk. We now replace the subchain v1 − . . .− vk with a
new special node vC containing single job JC with processing times pCi = τ +

∑
Jj∈J (C)

pji,

and set weights of edges [v, vC ] and [vC , u] to zero.
Such a transformation is not reversible in general. To make it reversible we need to

apply certain restriction on schedules for the transformed instance:

1. If machine arrives at JC from one end (say, from v), the machine is considered to be
at another end (say, u) after the completion of operation of job JC .

2. Any machine can bypass the node vC , but this takes τ time units.

We say that the chain contraction transformation is conditionally reversible, meaning that
we obtain a special node which has to be treated as described above.

The main result of this paper is the following

Theorem 2. For any instance I ∈ Im there exists a combination of valid chord elimina-
tions and chain contractions I → Ĩ such that Ĩ contains at most 2m nodes from which at
most m are special.

Moreover, the structure of the resulting instance Ĩ is not arbitrary. For instance, for
m = 2 the most general structure we need to investigate is the cycle (v0−v1−v2−v3−v0)
with additional chord [v0, v2] and v1, v3 being special nodes. Our working conjecture is that
for any instance I of such a special structure α(I) = 6

5 , and therefore α(I2) = 6
5 . Theorem

2 can still be useful for a general ROm||Rmax problem, although the research for the tight
optima localization interval for m > 3 is difficult even for the classic Om||Cmax problem.
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