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We study the complexity of scheduling problems where jobs have a variable processing
time: one can decide the processing time of each job. The profit for a job then depends on
its allocated processing time. Detailed results and proofs for this problem can be found in
the thesis of Fontan (2019). This abstract presents an insight of that document.

In our experience, the problem originates from astrophysics and the search for exoplan-
ets (Lagrange et. al. 2016). Astrophysicists want to schedule observations on a telescope
and, for each possible target (star), there exist time-windows when it is visible, a required
duration for its observation, and an interest for observing it; the objective is to maximize
the total interest of the schedule. This primary version of the problem has been described
and solved by Catusse et. al. (2016); but it appears that shortening an observation would
be worth doing if that makes room for another one. More generally an observation remains
relevant even if its processing (observation) time is slightly less than the required value,
with an accordingly downgraded interest. Such a situation can be modeled by processing
time dependent profits. The general problem is NP-complete, and an efficient practical so-
lution algorithm has been proposed Fontan (2019). In the following, we present the model
for processing time dependent profit (Section 1), limited to the case where time-windows
only differ by their deadlines. Then in Section 2, we focus on a special polynomial case to
show a proof technique for those problems.

1 Processing time dependent profit

We consider a scheduling problem with n jobs and m identical parallel machines; each
job Tj has a deadline dj and a profit function wj(pj) that depends on the decided processing
time pj . Figure 1 shows three examples of profit functions.

A schedule is feasible if it satisfies the following conditions:

– every machine processes only one job at a time,
– a scheduled job Tj must start after 0 and end before its deadline dj ,
– preemption is not allowed.

The objective is to find a feasible schedule that maximizes the total profit:

max

n∑
j=1

wj(pj)

with the convention that pj = 0 if Tj is not scheduled.
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Fig. 1. Examples of profit functions of: (a) a classical scheduling problem (wj(p) = wj if
p ≥ pj , 0 otherwise); (b) a basic (linear profit) problem; (c) the star observation problem

2 Focus on a polynomial case solved with maximum weight b-matching

In this section, we focus on a specific variant with a common deadline, i.e. dj=d for all
jobs Tj , and the following profit function:

wj(p) =

{
0 if p < pmin

wmin
j + bj(p− pmin) if p ≥ pmin

p

wj(p)

pmin

wmin
j

We exhibit a polynomial algorithm for this special processing time dependent profit
maximization scheduling problem with parallel machines. This algorithm uses as subprob-
lem the maximum weight b-matching which can be solved in polynomial time (Schrijver
2002): Given a graphG(V,E), a demand/supply bv for each vertex v ∈ V , and a weight/cost
ce for each edge e ∈ E, a b-matching of G is a vector x ∈ NE such that

∑
u,(uv)∈E x(uv) ≤ bv

for all v ∈ V . The weight of a b-matching x ∈ NE is defined as
∑

e∈E cexe. The maximum
weight b-matching problem is then the problem of finding a b-matching of maximum weight
in G.

A set of solutions is dominant if it contains at least one optimal solution. Our algorithm
consists in solving a polynomial number of maximum weight b-matching problems which
rely on the dominant set described below.

We consider the case d = qpmin + r, with q, r ∈ N, q ≥ 2, 0 < r < pmin. However, with
a similar reasoning, the results can be adapted for the case d = qpmin, q ∈ N, q ≥ 2. The
case d < 2pmin is trivial.

Lemma 1. Let U be the set of solutions such that for all S ∈ U :

– for all Tj ∈ S, pj ≥ pmin;
– on each machine, there exists at most one job Tj ∈ S such that pj 6= pmin;
– there exists at most one job Tj ∈ S such that pj /∈

{
d, pmin, pmin + r

}
. Such a job is

called a special job.

Then, U is dominant.

Figure 2 illustrates the structure of the solutions of U . The horizontal axis corresponds
to the time, each line represents a machine and each striped rectangle and its length
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Fig. 2. Illustration of the structure of the solutions in U

represent a scheduled job and its processing time. The long jobs on the top machines are
those of length d; the smallest jobs are those of length pmin; the jobs at the end of the
bottom machines are those of length pmin + r; the job with vertical stripes is a special job.

Let S /∈ U be an optimal solution. The idea of the proof of Lemma 1, that we do not
detail here, is to build another solution S′ ∈ U from S without degrading its value.

Theorem 1. The processing time dependent profit scheduling problem with a common
deadline for all jobs and a profit function as decribed at the beginning of this section can
be solved in polynomial time.

Proof. Following Lemma 1, we only focus on solutions of U . Thus, we can partition the
jobs of a solution S ∈ U into 4 subsets depending on their processing time (and one more
for the non scheduled jobs):

U1(S) = {Tj ∈ S, pj = d}
U2(S) = {Tj ∈ S, Tj is a special job}
U3(S) =

{
Tj ∈ S, pj = pmin + r

}
U4(S) =

{
Tj ∈ S, pj = pmin

}
U0(S) = {Tj /∈ S}

In addition, we define nk(S) the cardinality of Uk(S) and t(S) the number of jobs
scheduled on the same machine as the job of U2:

∀k ∈ {0, . . . , 4}, nk(S) = |Uk(S)|

t(S) =

{
0, if U2(S) = ∅
d−pj

pmin , if U2(S) = {Tj}

Note that, if U2(S) = {Tj}, then pj = d− t(S)pmin.
We now infer the following relations. For all S ∈ U :

0 ≤ n1(S) ≤ m 0 ≤ t(S) ≤ n− 1

n2(S) =

{
0, if t(S) = 0
1, otherwise

n3(S) = m− n1(S)− n2(S)

n4(S) = (q − 1)n3(S) + t(S) (remember that q = bd/pminc)
n0(S) = n− n1(S)− n2(S)− n3(S)− n4(S)
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Therefore, if n1(S) and t(S) are fixed, we can determine n2(S), n3(S), n4(S) and
n0(S). Thus, the optimal value is the best optimal value of the O(n2) problems with those
parameters fixed:

OPT = max
(n1,t)∈({0,...,m}×{0,...,n−1})

OPT(n1, t)

Now, we show that for all (n1, t) ∈ {1, . . . ,m} × {0, . . . , n − 1}, a maximum weight b-
matching model can compute OPT(n1, t). We create n nodes Tj , j = 1, . . . , n with supply
1, and 5 nodes Ui, i = 0, . . . , 4 with demand ni such that n2 = 0 if t ≤ 1, 1 otherwise;
n3 = m−n1−n2, n4 = (q−1)n3+ t, n0 = n−n1−n2−n3−n4. Then for all j = 1, . . . , n,
for all i = 0, . . . , 4, we add the arc (Tj , Ui) and cost:

cji =


wj(d) i = 1
wj(d− tpmin) i = 2
wj(p

min + r) i = 3
wmin

j i = 4
0 i = 0

A part of the graph including only one job is represented in Figure 3. Edges are only
between a node corresponding to a job and a node corresponding to a set Uk. If edge
(Tj , Uk) is used in the b-matching solution, then job Tj will be scheduled according to the
corresponding set in the corresponding solution of the scheduling problem. For example, if
Uk = U1, then pj(S) = d. Hence, the obtained solution thus corresponds to a schedule S
with n1(S) = n1, etc.

The size of the graph is polynomial compared to the size of the instance. Furthermore,
the number of problems that we have to solve is O(n2). Therefore, the problem can be
solved in polynomial time.
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Fig. 3. A part of the graph showing only one job given as input of the maximum weight
b-matching problem



5

References

Anne-Marie Lagrange, Pascal Rubini, Nadia Brauner, Hadrien Cambazard, Nicolas Catusse, Pierre
Lemaire, and Laurence Baude. SPOT: an optimization software for dynamic observation
programming. In SPIE 9910, Observatory Operations: Strategies, Processes, and Systems VI,
991033 (July 18, 2016), Edinburgh, United Kingdom, July 2016.

Nicolas Catusse, Hadrien Cambazard, Nadia Brauner, Pierre Lemaire, Bernard Penz, Anne-Marie
Lagrange, and Pascal Rubini. A Branch-And-Price Algorithm for Scheduling Observations
on a Telescope. In Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI-16), pages 3060–3066. AAAI Press, 2016.

Florian Fontan. Theoretical and practical contributions to star observation scheduling problems.
PhD Thesis, Grenoble 2019.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2002.


	Scheduling problems with processing time dependent profit: applications and a nice polynomial case
	Florian Fontan, Nadia Brauner, Pierre Lemaire

