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1 Introduction

We investigate a stochastic variant of the well-know 1|rj |
∑
wjUj problem, in which the

jobs are subject to unexpected failure which leads to additional costs. The decision maker
is then allowed to take recourse actions such as outsourcing or spending more time on the
jobs to fix them. We are interested in worst-case optimization, with polyhedral uncertainty
set affecting the objective function.

In our problem, called Two-Stage Robust Weighted Number of Tardy jobs (2SRWNT) in
the sequel, an instance consists of a set of jobs J , each of which is characterized by a release
date rj , a due date dj , and a nominal processing time pj . A weight wj can be interpreted
as the cost for executing the job tardy, or the opposite of the profit of processing the job
on time. At the first stage, here-and-now decisions are to select a subset of jobs J ∗ ⊆ J to
process. After that, a subset of the jobs can be affected by unexpected failures, those being
governed by the uncertainty set Ξ =

{
ξ ∈ R|J|+

∣∣∣ ξj ≤ 1,∀Jj ∈ J and
∑
j|Jj∈J ξj ≤ Γ

}
.

The realization of alea ξ ∈ Ξ determines a profit degradation for each job Jj ∈ J defined
as δj(ξ) = δ̄jξj , where δ̄j is the maximum additional cost linked to the job’s failure. Input
parameter Γ is the largest number of jobs that can incur their maximum degradation. At
the second stage recourse actions have to be taken. For each j ∈ J ∗, one can choose (i)
to keep the revealed profit ; (ii) to repair the job, adding τj time units to its processing
time to recover its initial profit ; or (iii) to reject the job, and pay a fixed outsourcing cost
fj . Finally, jobs in J ∗ that are not rejected must be scheduled so that they meet their
time windows. The objective is to select a subset of jobs as well as the recourse actions
that minimize the worst-case overall cost (equivalently, maximizes the overall worst-case
profit).

(van den Akker, Hoogeveen and Stoef 2018) also study a variant of 1||
∑
Uj where

the processing times are uncertain. Given a discrete scenario-based uncertainty set, one
has to determine an initial, feasible for nominal processing times, sequence of jobs. At
second stage, once the scenario of actual processing times is revealed, the sequence must
be made feasible for those actual processing times by rejecting some jobs. The objective
is to minimize the expected cost of the repaired solution. Exact methods are proposed for
this problem. Our study differs by the basic problem (we consider unequal release dates
and weights), the nature of the uncertainty set (polyhedral vs. discrete, scenario-based),
the uncertain data (objective vs. constraints) and the possible recourse actions.

Robustness is known to be a hard issue in scheduling. (Aloulou and Della Croce 2008)
and (Yang and Yu 2002) show that even simple scheduling problems become NP-hard as
soon as the uncertainty set contains more than one scenario. A possible way to address our
problem is to use the so-called finite adaptability model of (Bertsimas and Caramanis 2010).
This heuristic approach consists in restricting the problem by determining at first stage a
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set of K recourse solutions, while the second stage is reduced to choosing the best of those
for the revealed alea. On the one hand, when K is small enough, this approach has the
advantage to produce tractable problems. On the other hand, it may produce suboptimal
solutions, since it restricts the number of resource actions that can be performed.

The contribution of this abstract is to propose the first exact method for this problem.
It is based on an MILP formulation based on a recent result of (Arslan and Detienne 2018).
We solve the model using a branch-and-price algorithm.

2 Mixed Integer Linear Programming model

We first recall the idea of the ILP model proposed in (Detienne 2014) for 1|rj |
∑
wjUj ,

which we extend to the robust case. Their approach is based on the fact that minimizing the
weighted number of tardy jobs can be decomposed into two distinct decisions: (1) decide
which jobs are to be executed tardy and (2) in what order the on-time jobs are executed.
We know that if the jobs have agreeable time windows (i.e., that the tasks can be ordered in
such a way that for each Ji before Jj we have ri ≤ rj and di ≤ dj), then a feasible sequence
of on-time jobs exists iff the earliest due-date first rule (EDD) yields a feasible solution.
The main idea of (Detienne 2014) is to reformulate the general 1|rj |

∑
wjUj problem into

a problem of selecting jobs with agreeable time windows. To do so, a set of so-called job
occurrences is created from the original set of jobs in such a way that EDD may still be
applied. Formally, consider a job Ji ∈ J . For any job Jj ∈ J whose time window is not
agreeable with that of Ji (i.e., ri < rj , di > dj , and ri + pi + pj ≤ dj), we create a job
occurrence Jk ∈ J̃ such that rk = ri, pk = pi, wk = 0, fk = fi, δ̄k = δ̄j , τk = τj and a hard
deadline d̄k = dj and which represents the scheduling of Ji before Jj . The original job Ji is
also added to the set of job occurrences J̃ , with a null weight as well. We define, for every
job Jj ∈ J , Gj as the set gathering all the job occurrences related to Jj . The following
proposition, established in (Detienne 2014), naturally extends to the robust case.

Proposition 1. There is at least one optimal solution of 2SRWNT such that selected job
occurrences are scheduled according to a non-decreasing order of their deadlines with ties
being broken in a non-decreasing order of their release dates.

In the remainder, we assume that job occurrences are sorted according to a non-decreasing
order of their deadlines and denote by •k the data • of the kth occurrence in that order
(e.g., pk now denotes the processing time of the kth job occurrence in that order). Similarly
to (Detienne 2014), we assign reversed time windows to each job occurrence given by
[r̂j , d̂j ] = [maxi di − dj ,maxi di − rj ], which helps writing an ILP model with a stronger
linear relaxation.

For every job Jj ∈ J , we introduce decision variable Uj which is equal to 1 if Jj is tardy,
0 otherwise. For every job occurrence Jk ∈ Gj , we denote by yk the selection variable of the
kth job occurrence, and zk the decision variable indicating whether the job occurrence is
repaired or not. More precisely, if Uj = 0, then Jj is decided to be executed on-time in the
first stage. Once the uncertainty is revealed, the sequencing of the jobs and the recourse
actions have to be decided. The following cases may arise: (i) ∃Jk ∈ Gj , yk = zk = 1,
i.e. the job is executed and repaired ; (ii) ∃Jk ∈ Gj , yk = 1 and zk = 0, i.e. the job
is executed and the deteriorated profit is undertaken ; (iii) ∀Jk ∈ Gj , yk = zk = 0, the

job is outsourced. Let us introduce the set Y ⊂ {0, 1}|J̃ | × {0, 1}|J̃ | ×R|J̃ |+ of all feasible
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second-stage solutions:

Y =



ρk = pkyk + τkzk ∀k|Jk ∈ J̃

zk ≤ yk ∀k|Jk ∈ J̃∑
k|Jk∈Gj

yk ≤ 1 ∀Jj ∈ J

t̂k + ρk −Mk(1− yk) ≤ d̂k ∀k|Jk ∈ J̃

t̂k−1 − t̂k − ρk ≥ 0 ∀k 6= 1|Jk ∈ J̃

t̂k ≥ r̂k, ρk ≥ 0 ∀k|Jk ∈ J̃

yk, zk ∈ {0, 1} ∀k|Jk ∈ J̃

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Here, t̂k is the variable equal to the (reverse) starting time of occurrence k, while ρk is equal
to the processing time of occurrence k, and Mk is a large constant. Constraints (1) define
the processing time of a job with respect to the recourse action. Constraints (2) enforce that
a job may be repaired only if it is scheduled. Constraints (3) limits the number of selected
occurrences to one per job. Constraints (6) and (4) respectively enforce that no job starts
before its release date or finish after its deadline, while constraint (5) makes sure that no
two jobs overlap. By denoting Y(U) = {(y, z, t̂, ρ) ∈ Y |

∑
k|Jk∈Gj yk ≤ 1− Uj ∀Jj ∈ J }

the set of feasible second-stage solutions that are consistent with first-stage solution U , the
objective function is given by:

min
U∈{0,1}|J |

∑
j|Jj∈J

wjUj + fj(1− Uj) + max
ξ∈Ξ

min
(y,z,t̂,ρ)∈Y(U)

R(ξ, y, z)

where R(ξ, y, z) denotes the cost of recourse action (y, z) corresponding to scenario ξ given
by: R(ξ, y, z) =

∑
j|Jj∈J

∑
k|Jk∈Gj

[
(δ̄kξj − fk)yk − δ̄kξjzk

]
. Note that the outsourcing cost

has been moved to the first-stage: it is assumed that outsourcing is always paid for on-
time jobs unless the job is scheduled in the second stage. Also, remark that for a given
U ∈ {0, 1}|J | the recourse function Q(U, ξ) = min(y,z)∈Y(U)R(ξ, y, z) is not a convex
function of ξ. That implies that the worst-case is in general not achieved at an extreme
point of Ξ, so that more than Γ jobs might see their profit degraded by a small amount.

This formulation of 2SRWNT possesses interesting features. First, the uncertainty is
polyhedral and only enters the objective function. Second, the constraints linking the first
and second stages

∑
k|Jk∈Gj yk ≤ 1 − Uj ∀Jj ∈ J can be expressed as γ ≤ β, with γ

and β vectors of binary decision variables associated respectively with the second and first
stage. This allows us to use the methodology introduced in (Arslan and Detienne 2018)
to reformulate 2SRWNT, which is based on the following successive steps: (i) replacing
Y(U) with its convex hull expressed in terms of its extreme points (using Minkowski-
Weyl theorem) ; (ii) permuting the inner max and min (using von Neumann theorem) ;
(iii) linearizing the inner max using LP duality (Bertsimas and Sim 2004). Denoting by
(ye, ze), e ∈ E the extreme points of conv Y, we obtain the following MILP model:

(ColGen) : min
∑
Jj∈J

[wjUj + fj(1− Uj) + vj ] + Γu−
∑

k|Jk∈J̃

[
fk

∑
e∈E

ye
kαe

]

s.t.
∑
e∈E

αe = 1 (8)

∑
e∈E

ye
kαe ≤ 1− Uj ∀k|Jk ∈ Gj , ∀Jj ∈ J (9)

u+ vj ≥
∑

k|Jk∈Gj

[
δ̄k

∑
e∈E

(ye
k − zek)αe

]
∀j|Jj ∈ J (10)
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Uj ∈ {0, 1} ∀Jj ∈ J , αe ≥ 0 ∀e ∈ E, u ≥ 0, vj ≥ 0 ∀Jj ∈ J

Here, decision vector α represents the convex combination multipliers from the reformu-
lation of conv(Y) while u and v are the dual variables associated to the constraint ξ ∈ Ξ.
Constraint (9) links the recourse action with the first-stage decision. Constraint (8) en-
forces that the recourse actions are convex combinations of the extreme points of conv(Y).
Finally, constraint (10) embeds the dualized cost associated to the worst-case scenario.

Problem 2SRWNT is trivially NP-hard. This formulation proves as a corollary, that
quite surprisingly for a min-max-min problem with integer recourse, it lies inside class NP
and is thus NP-complete (Arslan and Detienne 2018).

3 Numerical experiments

We develop a branch-and-price algorithm to solve model (ColGen), based on the C++
library BapCod (Vanderbeck 2005). The pricing problem consists in finding a solution in
Y minimizing the reduced-cost. This variant of 1|rj |

∑
wjUj with two possible modes per

job (normal or repaired) is solved with a MILP solver. Our approach is compared against
the finite adaptability method of (Hanasusanto, Kuhn and Wiesemann 2015), which is the
method that is the closest to our ours, although it results in a heuristic formulation. We
solve this model directly using a general purpose commercial solver.

We compare both approaches on a set of 3200 randomly generated instances. Our
branch-and-price algorithm solves to optimality all 20 job-instances of our test bed within
one hour, and 85% of the 25 job-instances. Our method provides as by-product, for each
solved instance, the number K∗ of recourse solutions required to achieve optimality. When
using K∗ as the parameter of the finite adaptability model, it fails at solving some 10
job-instances. It solves less than 17% of the instances for which K∗ ≥ 2 and |I| = 25.

4 Conclusion

We have proposed a numerically effective algorithm to solve a hard robust scheduling
problem exactly. It compares favorably to the finite adaptability approach, in terms of
computing time and quality of solutions.
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