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1 Introduction

In project management, computing a schedule ahead of time is often necessary to ensure
the availability of equipment or sta�. When the schedule is about to start, the project data
may have changed, e.g., some jobs may be longer than expected in the �rst place. Hence
the schedule computed previously has to be modi�ed accordingly. However, in the context
of an industrial complex project, some jobs might be di�cult or costly to reschedule. The
decision maker thus needs a guarantee over the starting times of these jobs when choosing
an initial schedule.

The present work follows the general framework of (Bendotti et al. 2017), (Bendotti
et al. 2019) to integrate such a criterion. We consider a project scheduling problem where
jobs must be scheduled while respecting precedence constraints. Processing times of jobs
have a nominal value but they may deviate from it by an uncertain amount, which is
supposed to be lying in an uncertainty set. A baseline schedule is a schedule of the instance
with nominal processing times that satis�es a given global deadline M . Given a baseline
schedule x, subsets of anchored jobs are de�ned as subsets whose starting times in x can be
guaranteed whatever the realization of processing times in the uncertainty set. Each job is
associated with an anchoring weight, and the Anchor-Robust Project Scheduling Problem
(AnchRob) is to �nd a baseline schedule x and an anchored subset H, so that the total
weight of H is maximized.

The (AnchRob) problem was introduced in (Bendotti et al. 2019) as a tool for achieving
a trade-o� between robust-static project scheduling � where a schedule is computed for the
worst-case processing times � and the adaptive robust project scheduling problem studied
in (Minoux 2008) � where a makespan is computed, but no baseline schedule. (AnchRob)
produces a baseline schedule whose makespan is controlled by the deadline M , and the
adaptiveness of the solution is controlled through anchored jobs. (AnchRob) was studied
in the case of budgeted uncertainty, where at most Γ processing times may deviate from
their nominal values at a time. It was proven NP-hard and a MIP formulation was provided:
it has a polynomial number of variables and constraints, but it has a poor linear relaxation
value due to �bigM� values. Instances up to 200 jobs were solved in up to 4 minutes using
this formulation.

Contributions. The present work investigates improved MIP formulations for (An-
chRob). We introduce two MIP formulations, that are valid for a wider class of uncertainty
sets beyond budgeted uncertainty. Two types of decisions variables are considered: for each
job i ∈ J an anchoring variable hi ∈ {0, 1} to indicate whether job i is anchored, for
each job i ∈ J̄ a continuous variable zi ≥ 0 for the starting time of job i in the baseline
schedule. The �rst formulation Fzh uses both types of variables, and it has polynomial size.
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The second formulation Fh uses only anchoring variables. It has an exponential number
of constraints for which separation algorithms are proposed. We also prove that Fzh can
be projected explicitely on anchoring variables, thus yielding an alternative formulation
in anchoring variables only. We establish that formulations Fzh and Fh are not compara-
ble, and that they both give a better bound than the MIP formulation from (Bendotti et
al. 2019). From this analysis, we design a customized MIP formulation that takes advan-
tage of Fh and Fzh. In particular polyhedral properties are used to improve the separation
of inequalities from Fh and devise an e�cient Branch-and-Cut algorithm.

For the sake of brevity all proofs are omitted.

2 The Anchor-Robust Project Scheduling Problem

Let us de�ne more formally the Anchor-Robust Project Scheduling Problem. A set of
jobs J must be scheduled while respecting precedence constraints, represented by a directed
acyclic graph G. The vertex-set of G is J̄ = J ∪ {s, t} where s (resp. t) is a source (resp.
sink) representing the beginning (resp. the end) of the schedule. Each job i ∈ J has a
processing time pi ∈ R+, and ps = 0 by convention. Given a vector p ∈ RJ , let G(p) be
the weighted digraph obtained from G by weighting every arc (i, j) with pi. A schedule of
G(p) is a vector of starting times x ∈ RJ̄+ such that xj−xi ≥ pi for every arc (i, j) of G(p).
We consider a 2-stage framework where the processing times of jobs are uncertain. In �rst
stage, the decision maker has an instance G(p) to solve, called baseline instance, where p is
the nominal value of processing times. The project is given a deadline M ≥ 0. A baseline
schedule is a schedule of G(p) with makespan at mostM . In second stage, the instance will
be some G(p+ δ), where the vector δ ∈ RJ+ is a disruption. In general a baseline schedule
will not remain feasible in second stage. As done classically in robust optimization, we
consider that the decision maker wants to hedge against a collection (G(p + δ))δ∈∆ of
second-stage instances, where ∆ ⊆ RJ+ is the uncertainty set. Given a baseline schedule x0,
a subset H of jobs is anchored with respect to x0 if for every δ ∈ ∆, the baseline schedule
can be repaired into a feasible solution without changing starting times of jobs in H, i.e.,
for every δ ∈ ∆ there exists a schedule xδ of G(p + δ) such that x0

i = xδi for every i ∈ H.
Finally, each job i ∈ J is associated with an anchoring weight ai ∈ R+. (AnchRob) is then
to �nd a baseline schedule x0 and subset of jobs H anchored w.r.t. x0, so that the total
weight of anchored jobs

∑
i∈H ai is maximized.

Let us now recall a characterization of anchored jobs from (Bendotti et al. 2019) that
will be used in the sequel. Given i, j ∈ J̄ and δ ∈ RJ+ let Lδ(i, j) denote the length of the
longest i−j path in G(p + δ) (and −∞ if there is no such path). In particular, L0(i, j) is
the length of the longest i−j path in G(p). Let L∆(i, j) denote maxδ∈∆ Lδ(i, j).

Proposition 1. (Bendotti et al. 2019) Let x be a schedule of G(p). A set H is anchored
w.r.t. x i� xj − xi ≥ L∆(i, j) for every i ∈ H ∪ {s}, j ∈ H.

In this work, the set ∆ is supposed to be a subset of RJ+ such that: for every δ ∈ ∆,
for every J ′ ⊆ J , the vector δ′ de�ned by δ′i = δi if i ∈ J ′, and δi = 0 otherwise is still an
element of ∆. We consider that the values L∆(i, j) for every i, j ∈ J̄ are known and given
as input. No other information on the uncertainty set ∆ is required. The values L∆(i, j)
will appear explicitely in the constraints of the proposed mixed-integer formulations. The
computation of the L∆(i, j) values can be done in polynomial time for some uncertainty
sets, such as: budgeted uncertainty sets (Bertsimas and Sim 2004), uncertainty sets de-
�ned by a polynomial number of scenarii, and their convex hulls. It can also be done with
a pseudo-polynomial algorithm for uncertainty sets with several uncertainty budget con-
straints introduced in (Minoux 2007). When the computation of the L∆(i, j) values can
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be done in a preprocessing step, then the proposed algorithmic framework can be applied
using the L∆(i, j) values.

3 Two MIP formulations

3.1 A compact MIP formulation with anchoring and schedule variables

Theorem 1. A valid formulation for (AnchRob) is

(Fzh) max
∑
i∈J aihi

s.t. zj − zi ≥ L0(i, j) + (L∆(i, j)− L0(i, j))hj ∀i ∈ J̄ , j ∈ J̄ \ {t}
zt − zi ≥ L0(i, t) ∀i ∈ J
zt ≤M
zj ≥ 0 ∀j ∈ J̄
hj ∈ {0, 1} ∀j ∈ J

Note �rst that for a feasible pair (z, h) of Fzh, the set H associated with h is anchored
w.r.t. z, thanks to Proposition 1. The proof of the validity of formulation Fzh relies on a
dominance argument: we prove that for any set H anchored w.r.t. some baseline schedule,
there exists a baseline schedule z for which H is anchored and (z, h) is feasible for Fzh.
Note also that this formulation has a polynomial number of variables and constraints.

3.2 An exponential formulation with anchoring variables only

Let G be a weighted graph de�ned as the transitive closure of G, where every arc (i, j)
has arc-length L∆(i, j) if j 6= t, and L0(i, t) otherwise. Let P (resp. P>M ) denote the set
of s−t paths of G (resp. the set of s−t paths of G that have length > M). Given P ∈P,
let V (P ) denote the jobs of J along path P . We show the following result.

Theorem 2. A valid formulation for (AnchRob) is

(Fh) max
∑
i∈J aihi

s.t.
∑
i∈V (P ) hi ≤ |V (P )|−1 ∀P ∈P>M (PathCov)

hj ∈ {0, 1} ∀j ∈ J

The family of path covering inequalities (PathCov) imposes that there is at least one non-
anchored job along any path of P>M . Note that it is necessary: if all jobs along the path
were anchored, then with Proposition 1 every associated baseline schedule would have
makespan > M . Formulation Fh has an exponential number of constraints, thus we study
the separation of (PathCov) inequalities. The separation problem is a constrained longest
path problem in G, that is, the problem of �nding a path with length > M , and sum of
1− hi over vertices at least 1. Formally, we show that

Theorem 3. Separation of (PathCov) is weakly NP-hard and admits a pseudo-polynomial
algorithm based on dynamic programming. Separation of (PathCov) is polynomial-time
solvable in an integer point h ∈ {0, 1}J .

We mention that, given h ∈ {0, 1}J feasible for Fh, a baseline schedule for which the
corresponding set H is anchored can be found in polynomial time. Indeed it is su�cient to
compute an earliest schedule that satis�es the precedence constraints from G(p) and the
precedence constraints from Proposition 1. In particular, this justi�es that we obtained a
valid formulation for (AnchRob) with only h variables.
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4 Algorithmic framework

4.1 Comparison of formulations for budgeted uncertainty

Consider budgeted uncertainty. Then three formulations for (AnchRob) are available:
formulations Fzh and Fh, and the formulation from (Bendotti et al. 2019) denoted by Fxh.
It can be shown that the optimal values of the linear relaxation of Fzh and Fh are always
better than the optimal value of the linear relaxation of Fxh. We thus focused on Fzh and
Fh; it appears that the two formulations cannot be compared w.r.t. their linear relaxations.

Theorem 4. Fh and Fzh are not comparable, i.e., there exists instances where the optimal
value of the linear relaxation of Fh is better than the optimal value of the linear relaxation
of Fzh, and vice versa.

We also provide an explicit formulation of the projection of formulations Fzh and Fxh on
the space of anchoring variables. E.g., for Fzh formulation:

Proposition 2. Let h ∈ {0, 1}J . There exists z such that (z, h) is feasible for Fzh if and
only if h satis�es the inequalities

∑
(i,j)∈P L0(i, j) + (L∆(i, j)− L0(i, j))hj ≤M ∀P ∈P.

4.2 Dedicated Branch-And-Cut algorithm

Theorem 4 suggests the use of a combination of Fh and Fzh to solve e�ciently larger
instances of (AnchRob). We formulate the problem with z and h variables. All constraints
from Fzh are enforced in a static way. (PathCov) inequalities from Fh are separated in a
heuristic way to strengthen the formulation. Namely, we only separate (PathCov) inequal-
ities in integer points, thus in polynomial time.

Additional features are considered to improve the e�ciency of separated (PathCov)
inequalities, relying on polyhedral considerations. In particular, it can be shown that if
inequality associated with path P ∈ P>M is facet-de�ning, then it must satisfy: for any
i ∈ P , the path P ′ := P \ {i} is not an element of P>M . We enforce this property during
the separation process: an inequality (PathCov) is separated, then vertices are removed
from the path until the property is satis�ed. We will give numerical results to illustrate
the relevance of the proposed Branch-And-Cut algorithm.
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