
1

Generating instances for the two-stage multi-machine

assembly scheduling problem

Carla Talens1, Victor Fernandez-Viagas1 and Paz Perez-Gonzalez1

Industrial Management, School of Engineering, University of Seville
cartafa@us.es, vfernandezviagas@us.es, pazperez@us.es

Keywords: Benchmark, Assembly, Total Completion Time.

1 Introduction and description of the problem

The two-stage assembly scheduling problem consists of sequencing n jobs in a layout
composed of two stages. Each job has m1 + 1 operations. In the �rst stage, there are m1

dedicated parallel machines, in which the �rst m1 operations are conducted, while in the
assembly stage there are m2 identical parallel machines, being m2 ≥ 1. Only after all m1

operations are completed, the assembly operation may start in an assembly machine. A
job j has a processing time pij on machine i in the �rst stage and an assembly processing
time atj . The problem under study consists of scheduling the jobs in each machine so the
total completion time is minimized.

In this contribution, we focus on the development of two new benchmarks for the
two-stage assembly scheduling problem because two di�erent variants of the problem are
studied. The �rst one consists of several dedicated parallel machines in the �rst stage and
one assembly machine in the second stage, and, following the notation by Framinan et al.
(2019), it is denoted as DPm1

→ 1||
∑
Cj . In the second one, there arem2 identical parallel

machines in the last stage with m2 ≥ 1. It is denoted as DPm1
→ Pm2

||
∑
Cj .

2 New benchmark: parameters and generation procedure

In this section, we detail the characteristics, the parameters, and the generation pro-
cedure of the two new benchmarks. According to the works by Hall and Posner (2001)
and Vallada et al. (2015), the next characteristics should be taken into account in the new
proposed benchmarks: adequacy, hardness, exhaustiveness and amenability for statistical

analysis.

2.1 Parameters

The �rst testbed, denoted as B1, is a set of 240 instances with the following combi-
nations of number of jobs (n), number of machines in the �rst stage (m1) and number
of machines in the second stage (m2): n ∈ {50, 100, 150, 200, 250, 300}, m1 ∈ {2, 4, 6, 8}
and m2 = 1. The second testbed, denoted as B2, is a set of 960 instances where n ∈
{50, 100, 150, 200, 250, 300}, m1 ∈ {2, 4, 6, 8} and m2 ∈ {2, 4, 6, 8}. The values have been
taken based on Al-Anzi and Allahverdi (2006) and Allahverdi and Al-Anzi (2012). Both
testbeds have 10 associated instances for each combination. Note that, we have selected
both a wide range of levels and equidistant values for the number of jobs and machines to
ful�l the exhaustiveness and amenability requirements.

2.2 Adequacy

With respect to the adequacy characteristic, we should generate instances which exactly
suit the problem under study and not related problems. In our case, the instances should

2

be representative of the two-stage multi-machine assembly scheduling problem. Therefore,
the relationship between this problem and the related scheduling problems, such as the
Customer Order (CO) scheduling problem and the Parallel Machines (PM) scheduling
problem has to be analysed. To perform this analysis, we carry out a preliminary experiment
which lead us to generate the processing times in the �rst stage from a uniform distribution
U [1, 100] and in the second stage from a uniform distribution U [1, α100]. Parameter α is
designed to balance the connection between both stages. The next values of α are tested:
α = {0.5, 1, 2, 3}.

We generate two preliminary small testbeds. The �rst one, testbed A, consists of 540
instances with n ∈ {8, 10, 12}, m1 ∈ {2, 4} and m2 = 1, and, the testbed B consists of
1,080 instances with n ∈ {8, 10, 12}, m1 ∈ {2, 4} and m2 = {2, 3}. Then, we solve them
applying exact methods in order to identify representative instances of the problem under
study and the related problems. To do so, �rstly, we have adapted to our problem the
mathematical model found in the paper by Navaei et al. (2013). Then, we have modi�ed
it to solve the CO scheduling problem. And, �nally, we take the SPT rule plus the First
Available Machine rule to solve the PM scheduling problem. Therefore, we hold three exact
methods to solve the three di�erent scheduling problems.

Solving each instance by the three methods we obtain the optimal sequences for each
case denoted as MMA∗, CO∗ and PM∗. The evaluation of the objective function of
these schedules for the problem MMA are denoted as MMA(MMA∗), MMACO∗ and
MMA(PM∗). These values allow us to analyse the relationship between the problem un-
der study and the related problems (CO and PM).

To determine how is the relationship between the three problems we calculate the
Relative Percentage Deviation (RPD) of the MMACO∗ and MMA(PM∗), as follows:

RPDhs =
Chs − C∗s

C∗s
· 100 (1)

with Chs the total completion time obtained by h ∈ (MMA(CO∗),MMA(PM∗)) in
instance s (s = 1, . . . , S) and C∗s the minimum completion time known for instance s.
Then, the ARPD is computed as the average of all the instances.

Low values of ARPD mean that the problems are highly connected, i.e. the fact that
ARPDMMA(CO∗) is low means that the instances can be solved by methods of the CO
scheduling problem. Contrarily, high values of ARPD denote that the problem under study
is not related to the other problem.

Fig. 1: ARPD of exact methods when m2 =
1 and α = 2

Fig. 2: ARPD of exact methods when m2 ≥
2 and α = 2

For the DPm1
→ 1||

∑
Cj problem, Figures 1 and 2 show the relationship with CO

and PM when α = 2, since the ARPD in both cases are high (greater than 10), so the

3

instances are representative of our problem. When α = 0.5, the instances seem to be more
representative of the CO scheduling problem and, when α = 3, more representative of
the PM scheduling problem. The same results are obtained for the DPm1

→ Pm2
||
∑
Cj

problem as it can be seen in Figure 2.
Next, we should verify that the behaviour of these instances are also ful�lled when

the number of jobs and machines increases. As we can not solve bigger instances applying
exact methods, we solve the preliminary small testbeds by an approximate method, and
then, we compare these results with those obtained solving bigger instances with the same
approximate method. In this case, we apply the heuristic by Framinan and Perez-Gonzalez
(2017), adapted to DPm1 → Pm2 ||

∑
Cj in the case with more than one machine in the

second stage.. As it can be seen in Figures 3 and 4, when the number of jobs, n, increases,
the instances have the same behaviour as when n is low.

Fig. 3: ARPD of the heuristic when m2 = 1
and α = 2

Fig. 4: ARPD of the heuristic when m2 ≥ 2
and α = 2

2.3 Empirical hardness

In order to determine the empirical hardness, we use the following approach which
is based on the di�erence between a well-performing metaheuristic and a bound of the
problem (see Taillard, 1990 and Vallada et al., 2015). For each combination of n, m1

and m2, we generate 1,000 instances. So, in total 120,000 instances are generated: 24,000
for the combinations when m2 = 1 and 96,000 for the combinations when m2 ≥ 2. 10
instances are selected according to the following procedure: To test the di�culty of each
instance by, �rstly, computing a lower bound and, secondly, solving it by the Iterated
Greedy, IG, algorithm developed by Ruiz and Stützle (2007). We have adapted the lower
bound developed by Blocher and Chhajed (2008), which is computed by Equation 2, to the
problem under study, where wj =

∑
∀i

pij

m1
. The IG works as follows: The NEH heuristic

(Nawaz et al., 1983) gives the initial solution of the IG. The central procedures are the
destruction and the construction phases. Then, a local search procedure is carried out by
improving each solution generated in the construction phase. Finally, the new sequence is
accepted or not as the incumbent solution for the next iteration by a Simulated Annealing.

LB =
∑
j

max{∑
∀k≤j

dwje,max∀i
∑
∀k≤j

pij}

+
∑
∀j

pjA (2)

We set a stopping criterion depending on the size of the instance and the complexity
of computing the objective function (the total completion time) of this problem: n ·m/2 ·
90/1000 milliseconds, where m is equal to m1 + 1. Then, we obtain, for each instance, the

ARPD of the IG with respect to the lower bound. Following the idea by Vallada et al.
(2015), the higher the ARPDIG, the harder the instance is, i.e. if the solution founded by
the IG is further from the theoretical lower bound, the instance is hard to solve.

So, the procedure to obtain the hardest instances per combination is as follows: the
ARPDIG for the 1,000 instances are sorted in descending order. Then, the 10 �rst instances
per combination are selected to be part of the new benchmark. As a result, a new benchmark
with 240 instances (DPm1

→ 1||
∑
Cj) and another one with 960 instances (DPm1

→
Pm2
||
∑
Cj) are generated.

Regarding the exhaustiveness, the benchmark consists of a large number of instances,
240 and 960 respectively, and di�erent size of the parameters and di�erent combinations
have been considered. Finally, the benchmark is amenable for statistical analysis since the
levels of the parameters are equidistant and all the levels have been combined to generate
the instances.

Acknowledgements

This research has been funded by the Spanish Ministry of Science and Innovation, under
the project �PROMISE� with reference DPI2016-80750-P.

Bibliography

Al-Anzi, F. S. and Allahverdi, A. (2006). A Hybrid Tabu Search Heuristic for the Two-Stage
Assembly Scheduling Problem. International Journal of Operations Research, 3(2):109�119.

Allahverdi, A. and Al-Anzi, F. (2012). A new heuristic for the queries scheduling problem on
distributed database systems to minimize mean completion time. In Proceedings of the 21st

International Conference on Software Engineering and Data Engineering, SEDE 2012.
Blocher, J. D. and Chhajed, D. (2008). Minimizing customer order lead-time in a two-stage
assembly supply chain. Annals of Operations Research, 161(1):25�52.

Framinan, J. M. and Perez-Gonzalez, P. (2017). The 2-stage assembly �owshop scheduling problem
with total completion time: E�cient constructive heuristic and metaheuristic. Computers and

Operations Research, 88:237�246.
Framinan, J. M., Perez-Gonzalez, P., and Fernandez-Viagas, V. (2019). Deterministic assem-
bly scheduling problems: A review and classi�cation of concurrent-type scheduling models and
solution procedures. European Journal of Operational Research, 273:401�417.

Hall, N. and Posner, M. (2001). Generating experimental data for computational testing with
machine scheduling applications. Operations Research, 49(6):854�865.

Navaei, J., Fatemi Ghomi, S. M. T., Jolai, F., Shiraqai, M. E., and Hidaji, H. (2013). Two-stage
�ow-shop scheduling problem with non-identical second stage assembly machines. International
Journal of Advanced Manufacturing Technology, 69(9-12):2215�2226.

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
�ow-shop sequencing problem. Omega, 11(1):91�95.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the permuta-
tion �owshop scheduling problem. European Journal of Operational Research, 177(3):2033�2049.

Taillard, E. (1990). Some e�cient heuristic methods for the �ow shop sequencing problem. Euro-
pean Journal of Operational Research, 47(1):65�74.

Vallada, E., Ruiz, R., and Framinan, J. (2015). New hard benchmark for �owshop scheduling
problems minimising makespan. European Journal of Operational Research, 240(3):666�677.

