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1 Introduction

We consider a two-machine �ow shop problem with three operations originally proposed
in (Gupta et al. 2004). There is a set of n jobs being available at time zero to be processed
on a two-machine �ow-shop. Each job i has three operations, where the �rst operation
has processing time ai and must be performed on the �rst machine. The third operation
has processing time bi and must be performed on the second machine. Finally, the second
operation has processing time ci and can be performed either on machine 1 immediately
after the �rst operation or on machine 2 immediately before the third operation. The
operations of the same job cannot be processed concurrently, nor can any machine process
more than one job at a time. We assume that preemption is not allowed, i.e., any operation
once started must be completed without interruption. The goal is to minimize the makespan
denoted by Cmax. As mentioned in (Gupta et al. 2004), this problem applies to several
situations where a machine-independent setup operation is needed on each job between
the two operations. The setup time is job-dependent and both machines are equipped with
the required tooling for the setup. Then, the setup of an individual job is performed either
while the job is still mounted on the �rst machine after the completion of the �rst operation
or once the job is mounted on the second machine before the start of the second operation.
The problem has strong similarities with the two-machine �ow shop problem with common
due date and jobs selection considered in (T'kindt et al. 2007) and (Della Croce et al. 2017).
By using the extended three-�eld notation of (T'kindt, Billaut 2006) this latter problem
is denoted by F2|di = d, unknown d |ε(d/nT ) where the number of jobs n − nT to be
selected (here nT is the number of tardy, hence discarded, jobs) is given in advance and
the aim is to �nd the minimum value of d. For problem F2|di = d, unknown d |ε(d/nT ),
the best available exact approach is able to solve very large size instances in limited CPU
time (less than 30 seconds in the worst case for instances with n = 100000).

From every instance of the original 3-operation two-machine �ow shop problem, it is
possible to generate a special F2|di = d, unknown d |ε(d/nT ) problem as follows. Every
job i of the original problem induces two "coupled" incompatible jobs i1 and i2 of the jobs
selection problem where i1 has the second operation of i assigned to the �rst machine,
while i2 has the second operation of i assigned to the second machine. Correspondingly,
job i1 has processing times αi1 = ai + ci and βi1 = bi, while job i2 has processing times
αi2 = ai and βi2 = bi + ci. Thus, we reduce to a two-machine �ow shop problem with 2n
jobs where exactly n compatible jobs out of the 2n jobs have to be selected.
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2 ILP formulation

Consider the 2n jobs generated from the original problem as indicated above with
processing times αi (βi), 1 ≤ i ≤ 2n, on machine M1 (M2). When the set Ω of selected
jobs is �xed, the minimization of the makespan for these jobs can be done in polynomial
time by the so-called Johnson's algorithm (Johnson 1954): schedule �rst the jobs with
αi ≤ βi in non-decreasing order of αi, followed by the jobs with αi > βi in non-increasing
order of βi. Without loss of generality, let us assume that the 2n jobs are indexed according
to their position in the Johnson's schedule.

Let d be the unknown common due date, or equivalently the makespan of the selected
jobs. Let us associate to each job i a binary variable xi that indicates if job i is selected or
not. A �rst ILP model is as follows.

min d (1)

α1x1 +

2n∑
i=1

βixi ≤ d (2)

2n∑
i=1

αixi + β2nx2n ≤ d (3)

j∑
i=1

αixi +

2n∑
i=j

βixi ≤ d, ∀j = 2, ..., 2n− 1 (4)

xi + xk = 1 ∀i, k incompatible (5)

xi ∈ {0, 1} ∀i ∈ 1, ..., n (6)

Here, constraints (2�4) are critical-path constraints which de�ne the value of d. Notice
that d is always determined by the sum of the processing times of jobs 1, .., j on the
�rst machine plus the sum of the processing times of jobs j, .., 2n on the second machine
where j depends on the selected early jobs and therefore constraints (2�4) consider all
possible values of j with 1 ≤ j ≤ 2n. Notice that in the critical path constraints (2�4),
we explicited constraint (2) corresponding to j = 1 and constraint (3) corresponding to
j = 2n. Constraints (5) represent the incompatibility constraints between each pair of
coupled jobs so that there will be exactly n early (selected) jobs. Finally, constraints (6)
indicate that the xi variables are binary.

Due to the presence of constraints (4) that generate O(n2) nonzeroes in the constraints
matrix, the above model is limited in size as it induces an out-of-memory status of the
solver if problems with several thousands of variables are considered.

As mentioned in (Della Croce et al. 2017), there exists an equivalent ILP formulation
withO(n) nonzeroes in the constraints matrix that can be obtained by introducing variables

yj =
∑j

i=1 αixi +
∑2n

i=j βixi and constraints yi = yi−1 − βi−1xi−1 + αixi, ∀i ∈ 2, .., 2n.

min d (7)

y1 = α1x1 +

2n∑
i=1

βixi (8)

y2n =

2n∑
i=1

αixi + β2nx2n (9)

yi = yi−1 − βi−1xi−1 + αixi ∀i = 2, ..., 2n− 1 (10)

yi ≤ d, ∀i = 1, ..., 2n (11)
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xi + xk = 1, ∀i, k incompatible (12)

xi ∈ {0, 1} ∀i ∈ 1, ..., n, yi ≥ 0 ∀i ∈ 1, ..., n (13)

Let us denote by ILPc the above ILP. Interestingly enough, the addition of the incom-
patibility constraints makes the problem much more di�cult both for CPLEX 12.9 solver
applied to ILPc and to the constraint generation approach of (Della Croce et al. 2017)
adapted in order to incorporate the incompatibility constraints. We tested both solution
approaches on a Computer Intel i5 @1.6 GHz and 8 G of RAM. We considered a stan-
dard distribution of processing times with ai, bi and ci uniformly distributed in the range
[1...100] and tested 10 distinct instances for each problem size considering a CPU time limit
of 60 seconds per instance. With this distribution, CPLEX 12.9 solver applied to model
(7�13) already failed to solve to optimality one instance with 200 jobs, while the constraint
generation approach of (Della Croce et al. 2017) was limited to 600 jobs runnning out of
time on one instance with 700 jobs. We remark however that constraints (8�9) in ILPc

can be modi�ed as follows where α[min2] and β[min2] indicate the second smallest processing
time on the �rst and the second machine respectively.

y1 = α1x1 + α[min2](1− x1) +

2n∑
i=1

βixi (14)

y2n =

2n∑
i=1

αixi + β[min2](1− x2n) + β2nx2n (15)

Indeed, if x1 = 1, then constraint (14) coincides with constraint (8), while if x1 = 0, then
the critical path on the �rst selected job has processing time on the �rst machine not
inferior to a[min2]. Similar consideration holds with respect to constraint (15) taking into
account the critical path on the last selected job and its processing time on the second
machine. At the time of the conference we will also discuss how a[min2] and b[min2] can be
increased without loss of optimality. In the reminder we denote by ILPic the improved ILP
formulation that substitutes in ILPc constraints (8�9) with constraints (14�15).

Hence, we can then successfully adapt to our problem the constraint generation ap-
proach proposed in (Della Croce et al. 2017) according to the scheme depicted in Algo-
rithm 1. There, we denote by F23op our problem formulated according to the ILPic model
and by F23oprel its relaxation induced by the elimination of constraints (10) and considering
constraints (11) only for i = 1, 2n.

Algorithm 1 Contraint Generation Algorithm

1: End=False
2: while !End do

3: Solve F23op
rel : x̄ is its solution and OPT (F23op

rel ) its value
4: Compute d(x̄) the optimal value of the ILP of F23op with added constraints x = x̄
5: if (d(x̄) = OPT (F2rel)) then
6: End=True
7: else

8: Let C be the constraint giving d(x̄) in the ILP of F23op for x̄
// (C is the most violated constraint)

9: Add C to F23op
rel

10: end if

11: end while

12: return x̄ as the optimal solution of F23op
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Algorithm 1 is a constraint generation approach solving initially problem F23oprel and
then considering a separation procedure adding to the relaxation any inequality of the
original formulation that is violated by the current solution. We tested both CPLEX 12.9
solver applied to model ILPic and Algorithm 1 on instances generated according to the
same distribution considered above (10 instances for each problem size). The related results
are depicted in Table 1 where it is shown that Algorithm 1 is clearly superior and solves
within 60 seconds instances with up n = 30000. Detailed computational results on several
other di�erent distributions will be presented at the conference.

n CPLEX Algorithm 1
tavg tmax tavg tmax

1000 0.6 1 0.1 1
4000 9.3 13 0.6 1
7000 24.1 36 1.2 2
10000 CPU limit 3.7 5
15000 CPU limit 6.2 9
20000 CPU limit 10.1 13
25000 CPU limit 24.3 35
30000 CPU limit 25.9 43
35000 CPU limit CPU limit

Table 1. Comparing CPLEX applied to model ILPic and Algorithm 1
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