
1

Adversarial bilevel scheduling on a single machine

Della Croce F.1 and T'kindt V.2

1 DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, CNR, IEIIT,
Torino, Italy.

federico.dellacroce_a@polito.it
2 Université de Tours, Laboratoire d'Informatique Fondamentale et Appliquée (EA 6300), ERL

CNRS 7002 ROOT, Tours, France,
and

DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy,
tkindt@univ-tours.fr

Keywords: Single machine, bilevel optimization.

1 Introduction

In this contribution we focus on a particular setting in which two agents are concerned
by the scheduling of a set of n jobs. The �rst agent, called the leader, can take some decisions
before providing the jobset to the second agent, called the follower, who then takes the
remaining decisions to solve the problem. As an example, the leader could select a subset
of n′ ≤ n jobs that the follower has to schedule. Notice that the decisions the agents can
take are exclusive: in this example, the follower cannot decide the jobs to schedule and the
leader cannot schedule the jobs. This setting falls into the category of bilevel optimization

(Dempe et al. 2015). In such problems it is assumed that the leader and the follower follow
their own objectives which can be contradictory, so leading to very hard optimization
problems. Recently, many papers on bilevel combinatorial optimization appeared, here we
refer to (Caprara et al. 2016, Della Croce et al. 2019, Fischetti et al. 2017, Fischetti et
al. 2018, Fischetti et al. 2019) just to mention a few. On the other hand, to the authors
knowledge, the literature on bilevel scheduling is much more limited. We refer here to
(Abass 2005, Karlof and Wangs 1996, Kis and Kovacs 2012). We focus in the following on
single machine scheduling under the adversarial framework where the goal of the leader is
to make the follower solution as bad as possible and provide several exact polynomial time
algorithms for di�erent objective functions when the leader can only modify data of the
problem.

2 Adversarial bilevel single machine scheduling

2.1 Sum of completion times

It is assumed that, given a list of n jobs with processing times pFj , the follower is

scheduling jobs so that their sum of completion times, denoted by
∑
j C

F
j , is minimum.

This is doable in polynomial time by applying the so-called SPT rule (Shortest Processing
Times �rst). Let be the initial processing times pj so that p1 ≤ ... ≤ pn. Then, the leader
has to decide how to �x quantities qj so that with pFj = pj + qj , the follower optimal
solution is the worst possible. Obviously, it is of no interest for the leader that some qj < 0.
In addition, the leader has a budget so that

∑
j |qj | ≤ Q, with Q ∈ N given. This problem

is referred to as 1|ADV −p|
∑
j C

F
j , with ADV −p meaning that it concerns an adversarial

bilevel problem in which the leader can only modify the processing time values.

Theorem 1. The 1|ADV−p|
∑
j C

F
j problem can be solved in O(n log(n)) time. The leader

sets:
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• qj = P − pj, ∀j = 1..
(
kP −Q− kPP +

∑kP
i=1 pi

)
,

• qj = P − pj + 1, ∀j =
(
kP −Q− kPP +

∑kP
i=1 pi

)
..kP ,

• qj = 0, ∀j = kP + 1..n,

with P = argmax0≤t≤
∑

j pj

(
(kt−

∑k
j=1 pj) ≤ Q|p1 ≤ ... ≤ pk ≤ t and pk+1 > t

)
, and kP

the job such that pkP ≤ P < pkP+1. The follower applies the SPT rule on the pFj = pj+qj's.

2.2 Weighted sum of completion times

Now, let us assume that, in addition to the previous problem, jobs are also attached
weights wFj and the follower is scheduling jobs so that their weighted sum of completion

times, denoted by
∑
j w

F
j C

F
j , is minimum. Whenever the processing times are �xed, this

is doable in polynomial time by applying the so-called WSPT rule (Weighted Shortest Pro-

cessing Times �rst). Let be the initial processing times pj so that p1
wF

1
≤ ... ≤ pn

wF
n
. Again,

the leader has to decide how to �x quantities qj so that with pFj = pj + qj , the follower
optimal solution is as worse as possible. Obviously, it is of no interest for the leader that
some qj < 0. This problem is referred to as 1|ADV − p|

∑
j w

F
j C

F
j .

We �rst consider the relaxed version where qj ∈ R,∀j = 1..n, denoted by 1|ADV −
p, qj ∈ R|

∑
j w

F
j C

F
j .

Theorem 2. The 1|ADV − p, qj ∈ R|
∑
j w

F
j C

F
j problem can be solved in O(n log(n))

time. The leader sets:

• qj =
(Q+

∑kR
`=1 p`)w

F
j∑kR

`=1 w
F
`

− pj, ∀j = 1..kR

• qj = 0, ∀j = (kR + 1)..n,

with R =
Q−

∑kR
j=1 pj∑kR

j=1 w
F
j

and kR the job such that
pkR

wF
kR

≤ R <
pkR+1

wF
kR+1

. The follower applies the

WSPT rule on pFj = pj + qj and wFj = wj, ∀j = 1..n.

The optimal solution of the 1|ADV − p|
∑
j w

F
j C

F
j problem can be obtained by solving

iteratively the relaxed version: �rst solve it with the initial Q value and round down the
computed qj 's. Then, on the remaining quantity Q′ = (Q−

∑
j qj) solve again the relaxed

problem to modify processing times. This process is iterated until all initial budget Q is
assigned to jobs. As there are at most n iterations, this leads to an exact algorithm than
can be implemented in O(n2) time.

Let us turn to the other possible adversarial problem in which the leader can only
modify the weights of the follower. So, for the follower's problem we set pFj = pj and

wFj = wj+qj , ∀j = 1..n, with qj ∈ N. This problem is referred to as 1|ADV −w|
∑
j w

F
j C

F
j

and as previously, 1|ADV − w, qj ∈ R|
∑
j w

F
j C

F
j refers to the relaxed version with real

valued qj 's.

Theorem 3. The 1|ADV − w, qj ∈ R|
∑
j w

F
j C

F
j problem can be solved in O(n log(n))

time. The leader sets:

• qj =
(Q+

∑n
`=kR

w`)p
F
j∑n

`=kR
pF`

− wj, ∀j = kR..n

• qj = 0, ∀j = 1..(kR − 1),
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with R =
∑n

j=kR
pFj

Q+
∑n

j=kR
wj

and kR the job such that
pFkR−1

wkR−1
< R ≤ pFkR

wkR
. The follower applies

the WSPT rule on pFj = pj and wFj = wj + qj, ∀j = 1.n.

The 1|ADV −w|
∑
j w

F
j C

F
j problem can be solved by iteratively solving the relaxation

with real valued qj 's to dispatch the initial leader's budget Q. Again, this leads to an O(n2)
optimal algorithm.

2.3 Maximum lateness

Assume that each job j is de�ned by a processing time pj and a due date dj . The aim,
for the follower, is to schedule jobs so as to minimize the maximum lateness, de�ned by
LFmax = maxj=1..n(C

F
j −dFj ). The leader can modify either the processing times or the due

dates. Without loss of generality, let us assume that d1 ≤ ... ≤ dn.

We �rst focus on the problem where the leader can only modify the processing times,
which is referred to as 1|ADV − p|LFmax. As the due dates remain unchanged, we set
dFj = dj , ∀j = 1..n. Besides, pFj = pj + qj is the processing time value of the follower's
problem. It is trivial to show that qj ∈ N in order to make increasing the optimal solution
value of the follower's problem. Besides, it is known that the 1||Lmax problem is solved to
optimality by the EDD rule (Earliest Due Dates �rst). So the follower builds the optimal
sequence by sorting jobs by non decreasing values of the dFj 's which is not impacted by

any variations in the processing time values. Consequently, the 1|ADV − p|LFmax problem
can be solved in O(n log(n)) time by sorting jobs according to EDD rule and then set:

• qk = Q with k the earliest job having (Ck − dk) = L∗max and L∗max the Lmax value of
the EDD schedule,
• qj = 0, ∀j = 1..n, j 6= k.

Let us consider the problem in which the leader can only modify the due dates, which
is referred to as 1|ADV − d|LFmax. Then, we set pFj = pj and d

F
j = dj + qj , ∀j = 1..n.

Theorem 4. The 1|ADV −d|LFmax problem can be solved in O(n log(n)) time. The leader

sets:

� q` = D − d` ≤ 0, ∀` ∈ ∪j∈T Bj ∪ T ,
� and q` = 0, otherwise.

with:

� T = {j/CFj − dFj = L∗max}, with L∗max the value of the initial EDD sequence,

� Bj = {k < j|@` ∈ T , with k < ` < j}, ∀j ∈ T ,
� α` = (d` − dj) ≤ 0 and [`] is the `-th αu value when sorted by non decreasing values,

i.e. α[1] ≤ ... ≤ α[n′] with n
′ = | ∪j∈T Bj |,

� k such that (|T |+ k)α[k] −
∑k
`=1 α[`] ≤ Q ≤ (|T |+ k + 1)α[k+1] −

∑k+1
`=1 α[`],

� and D = bQ+
∑k

`=1 α[`]

|T |+k c.

The follower applies the EDD rule on pFj = pj and dFj = dj + qj, ∀j = 1.n.
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