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1 Problem description

This abstract deals with the transfer line balancing problem which consists in dis-
tributing n non-preemptive production tasks among m linearly ordered machines linked
by a conveyor belt such that the load of any machine does not exceed the fixed cycle
time T, and precedence constraints are satisfied. At each machine, the corresponding tasks
are allocated to blocks, where the tasks are executed simultaneously. Thus, the working
time of the block is equal to the longest processing time among the tasks allocated to
it. Up to mmax tasks can be attributed to the same block and at most by.x blocks may
be arranged at one machine. The blocks of the same machine are activated sequentially.
As a consequence, the load time of the machine is equal to the sum of the working time
of its blocks. We denote by U = {1,...,mbnax} the set of all possible blocks, and by
Up)={(p—1bmax+1,...,0bmax} the set of blocks for any machine p € W = {1,...,m}.

The nominal processing time of task j is t; for any j € V = {1,...,n}. A given
nonempty subset 1% C V of tasks is the set of uncertain tasks, i.e., the set of tasks whose
processing time may vary and can be larger than ¢;. The tasks in V\V are called certain
tasks and its processing time remains deterministic.

The set of tasks allocated to blocks for a given number of machines and satisfying
the mentioned above constraints forms a so-called feasible line configuration. For each
such configuration, we study a specific robustness measure, named stability radius. It is
calculated as the maximum increase of the nominal processing time that may affect any
uncertain task without compromising the feasibility of the corresponding line configuration
by breaking the cycle time constraint. The problem, denoted by P; and studied in this
abstract, seeks naturally a line configuration, which possesses the maximal value of its
stability radius.

The first mixed-integer linear programming (MILP) formulation of P; is due to Pirogov
(2019). This MILP is given in the next section. In order to solve it more efficiently, we
propose some improvements in that formulation, as well as tighter assignment intervals for
the tasks. Indeed, because of the precedence constraints, each task j has an assignment
interval [I;, u;] of indices of blocks which are available to perform this task.

2 Initial MILP formulation

P, has originally been formulated as a MILP on the following decision variables: p; is
the stability radius value to maximize; ;; is a binary variable that is set to one if and
only if the task j is allocated to the block k; yi is equal to 1 if the block k is not empty and
0, otherwise; 7, > 0 determines the working time of the block k; Afgi)n > 0 represents the



minimal value of the save time among all the blocks arranged at the machine p. The save
time is defined only for the blocks having uncertain tasks. It is calculated as the difference
between the nominal processing time of the longest uncertain task allocated to it and its
working time; a, is a non-negative variable, which is positive if the machine p processes at
least one uncertain task; zj is set to 1 if an uncertain task is allocated to the block k£ and
0, otherwise. The central idea of the MILP formulation for P; consists in maximizing p1,
expressed as the minimum idle time over all the machines that process uncertain tasks.

Maximise p;
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Constraints (1) ensure that each task is allocated to exactly one block. Inequalities (2)
enforce that each block contains at most 7., tasks. Any block having at least one assigned
task is considered as non-empty, as enforced by (3) and (4). Constraints (5) ensures that
block k41 has to be empty if block k is empty. The working time of the block is not less than

the processing time of any task allocated to it, as provided by (6). Constraints (7) express
the definition of Afm)n Inequalities (8) ensure that 2y is set to one if block k processes an
uncertain task. Constraints (9) state that the load of any machine cannot exceed the cycle
time, and the precedence constraints are enforced by inequalities (10), where A is the set of
all the pairs of tasks involved in the precedence constraints. Constraints (11) — (12) implies

that a,, is strictly positive if machine p has at least one uncertain task, and zero otherwise.



3 Reduction of the assignment interval of tasks

Initially, all the tasks have an assignment interval equal to [1, mbyax], but the precedence
constraints can help reducing them, which allows to set some x; ; decision variables to 0 in
the MILP formulation of P;. This is achieved by computing the earliest completion time

6" 6'"%) of task j € V with the following induction formula

initialized with HéEc) =0 and Qfﬁrsl) =m T (tasks 0 and n + 1 are the dummy start and
end of the schedule):
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Here, P(j) (resp. S(j)) is the set of direct predecessors (resp. successors) of j in the
precedence graph. From 9§EC) and 9§LS)7 the lower and upper bounds of the assignment

interval of task j, denoted by /; and u;, can be derived:
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Since no task can be assigned to the same block as its predecessors or successors, the
first rule is to apply the following formula as long as it brings improvements over current
bound values:

and the latest starting time

l; = max ¢ l;, max [ —I—l}, Uv:min{ul, min u —1}.
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The second rule is to compute bfffgx < bpmax, an upper bound on the number of non-

empty blocks at machine p. Minimizing bgﬂx permits to find empty blocks and allows to
set many decision variables to zero. Because of space limitation, this rule is not presented.

Finally, based on a set of tasks that have to be processed (resp. can be possibly pro-
cessed) by the machine p, noted as D(p) (resp. V(p)), the third rule is to assess the
maximum remaining working time of the machine p, for all p € W. If |D(p)| = rmax - br(ff,()lx,
then no task in V' (p)\D(p) can be assigned to the machine p. If | D(p)| < Tmax - %), then
the remaining working time of the machine p is upper bounded by rpax -7 — > JeD(p) t;.
Hence, any task in V(p)\D(p) whose duration is strictly larger than rmax - T — 32 ;cp( t
should be removed from V' (p).

4 Improvement of the MILP formulation

From the previous section, variable z; 1 is set to zero for all j € V and for all k & [I;, u;].
Similarly, if V(p) C V, then a, is set to 1.

The following valid inequalities are added to link the y, and z; variables (if a block
processes an uncertain task, it should be open):

2k < Yk Vk € U(p)a vp ew.

Constraints (7) can be reinforced by replacing T'(2 —yi, — z1,) with T'(1—z). In addition,

T can be replaced by the constant Afffix, which is an upper bound on the save time of any

block in the machine p:



0, if V(p) N (VAV) =V (p) or V(p) NV =V(p),
AR, = 0, else if ¢{£), < E(rfi)n,
P — z(nfi)n, otherwise.
Here, tl(ﬁi)ix is the maximum processing time among certain tasks that can be processed by
machine p, whereas f(rfi)n is the minimum processing time among uncertain tasks that can

be processed by machine p: tgf;x = max _ t; and f(nfi)n = min _t;.
JEV(@IN(V\V) JEV(PINV

Indeed, when machine p can only process certain tasks, there is no save time, so Agr’fgx

has to be set to 0. When machine p can only process uncertain tasks (or when certain
tasks are shorter than any uncertain task), Affi)n is zero, so Agf;x can also be set to 0.
In all other cases, the save time is upper bounded by the difference between the longest
certain processing time, and the shortest uncertain processing time. Hence, constraints (7)
are replaced with:
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The following constraints state that the processing time of an open block cannot be less
than the processing time of the shortest task that can be part of this block.

min t;-yr < 7%, Vp € W, Vk € U(p).
JEV(p)

The following inequalities declare that if a machine processes an uncertain task, then at
least one its block has to accommodate an uncertain task:

ap < Z zZk, Vp € W.
keU(p)

And finally, all the a, variables should be declared as binary.

5 Conclusion

When applying the improvements proposed in this paper, 829 instances out of 900
from Pirogov (2019) have been solved to optimality within the time limit of 600 seconds
per instance. Originally, only 467 instances were solved to optimality with the initial model.
These ideas may be applied to address another problem version, where the stability radius
is based on a different metric.
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