
Adapting the RCPSP framework to Evacuation Problems

Christian ARTIGUES1, Emmanuel HEBRARD2, Alain QUILLIOT2,, Peter

STUCKEY3, Hélène TOUSSAINT2

1 LAAS Laboratory, CNRS Toulouse, France

e-mail: artigues@laas.fr

2LIMOS laboratory, CNRS/UCAlermont-Ferrand, France

e-mail: alain.quilliot@isima.fr

3Monash University, Melbourne, Australia

Keywords: Scheduling, RCPSP, Evacuation.

1. Introduction

In the context of the H2020 GEOSAFE European project [7], we have been working on the

late evacuation problem, that means the evacuation of people and eventually critical goods facing

a natural disaster (flooding, wildfire..).

We did it accordingly to the 2-step approach currently favored by practitioners [2, 4, 7]: the

first step (pre-process) computes the routes that evacuees will follow; the second step, to be

performed in real time, schedules the evacuation of estimated late evacuees along those routes. In

practice, performing this last step requires forecasting the evolution of the disaster, rather difficult

in the case of wildfires, because of their dependence to topography and meteorology [4]. But we

consider here this issue as resolved and focus on the priority rules and evacuation rates which have

to be imposed to evacuees [3]. Our model non preemptive Tree evacuation planning problem

(NPETP) is equivalent to the model proposed in [1] evacuees have been clustered into groups with

same original location and pre-computed route, and once a group starts moving, it keeps on at the

same rate until reaching his target safe area (non preemption. This last hypothesis derives from

practical concerns and aims at avoiding any panic effect during the evacuation process. The pre-

computed evacuation routes are supposed to define a tree, with evacuee groups located at the

leaves of the tree and the safe target place at its anti-root. While [1] addresses the problem through

a discretization of both time and rate domains and constraint programming techniques, we make it

here appear as a RCPSP: Resource Constrained Project Scheduling Problem variant, [5,6]), and

use this RCPSP reformulation in order to get accurate optimistic bounds (lower bounds) and

design an efficient network flow based heuristic.

The paper comes as follows: Section 2 provides the NPETP model. Section 3, 4 are devoted to

optimistic bounds and algorithms. Section 5 proposes numerical tests.

2. The RCPSP Oriented NPETP Model

We consider here a tree A, oriented from its leaves towards its anti-root (safe target node),

which is the extremity of a single arc Root. The leaf set is denoted by J = {1..N} : every j  J is

provided with an evacuee population P(j) which has to be brought until the safe target anti-root.

We indistinctly talk about j as an evacuation node and an evacuation job. Arcs e are provided with

both a capacity CAP(e) and a length (or duration) L(e). This induces that the path (j) which

connect j to the anti-root has a length (j). Values CAP(e) increase as long as we advance along

path (j). For any arc e, J(e) denotes the subset of J defined by all j such that e  (j).

With every population j is associated a deadline (j) : evacuation of j must be achieved no

later than time (j). The evacuation time of population j is determined by its speed, which is

supposed to be the same for all evacuees, and by its evacuation rate (number of people/time unit)

vj, which is imposed to be independent on the time. It comes that the duration of evacuation job j is

mailto:artigues@laas.fr
mailto:alain.quilliot@isima.fr

equal to (j) + P(j)/vj. We want to schedule the evacuation process, while meeting the following

requirements:

- Every evacuation job j is achieved at time TEnd
j no later than deadline (j) ;

- For any arc e, the sum of the evacuation rates vj, taken for all j which are concurrently

entering on e, does not exceed CAP(e); (E1)

- The global safety margin M = Inf j ((j) - TEnd
j) is the largest possible.

In order to cast our NPTEP problem into the RCPSP framework, we identify every evacuation

job j with the entering process defined by the arrival of evacuees of j on the arc Root. Let us

denote by Tj the starting time of this process and by T*j its ending time. Then we get a schedule if

we decide, for every j  J, starting time Tj, ending time T*j, and evacuation rate vj, in such a way

that:

 Tj is no smaller than the release date R(j) = distance in the tree A from node j to the

origin of Root;

 T*j = Tj + P(j)/vj ≤ (j) – L(Root), which becomes the deadline D(j) of job j. We

deduce that vj should be no smaller than vmin(j) = P(j)/(D(j) – R(j)).

 Above capacity constraints (E1) are never violated.

Because of the Non Preemption hypothesis, entering process j should take place in a

continuous way between time Tj and time T*j, and define an interval. So we simplify the

formulation of (E1) by introducing a vector Z = (Zj,k, j,k = 1..N) 1..N) such that Zj,k = 1 iff j

precedes k. This allows to get our RCPSP oriented NPTEP model as follows:

NPTEP Model: {Compute vectors T = (Tj , j = 1..N), T* = (T*j , j = 1..N), v= (vj , j = 1..N)

≥ 0, and {0,1}-valued vector Z = (Zj,k, j,k = 1..N) such that:

o Zj,k = 1 iff j precedes k: we say that j and k overlap if Zj,k + Zk,j = 0;

o Temporal constraints:

 For any j, Tj + P(j)/vj = T*j ≤ D(j) ;

 For any j, Tj ≥ R(j);

 For any j, k, Zj,k = 1 -> T*j ≤ Tk ;

o Resource constraints:

 For any arc e, and any clique C  {1..N} in the overlap sense,

  j  J(e)  C vj ≤ CAP(e). (E2)

o Safety Margin Criterion: Maximize M = Inf j (D(j) - T*j)}

3. Optimistic Upper Bounds

We propose 2 upper bounds, both derived from the relaxation of the Non Preemption

constraint from the NPTEP model. We get upper bound UB-Tree while keeping all constraints but

the Non Preemption Constraint; we get upper bound UB-Arc while also relaxing all constraints

(E2) but those related to the final arc Root and those related to the arcs e(j) whose origins are the

leaves j = 1..N and whose capacities CAP(e(j)) are upper bounds values for the evacuation rates vj.

Computing both UB-Arc and UB-Tree follows the same algorithmic scheme:

Start from time value t = 0;

At any time t, consider all (entering) jobs j which have not been achieved yet and which

are such that t ≥ R(j); Denote by Q(j) the population which remains to enter into the arc

Root;

Compute, for any such a job j, its current optimistic safety margins Mj, which means the

safety margin D(j) - T*j = D(j)– Q(j)/CAP(e(j)) which would be achieved if constant rate

vj = CAP(e(j)) were applied to job j from t on;

Make run jobs j with higher value Mj, which are assigned values vj in such a way that

values Mj evolve at the same pace for those jobs with highest priority;

Compute smallest time value t* which fits some of the 3 following situations: (a) some

job j gets to its end; (b) t coincides with the release date R(j) of a job j which could not

be started before; (c) the priority order related to safety margins Mj has been modified.

Update t: t <- t*.

4. Algorithms

We propose here 2 algorithms. The first one is a fast insertion algorithm which relies on the

Network Flow approach which was implemented in [6] in the case of RCPSP. The second one was

already described in [1] and involved the use of IBM CP Optimizer Software.

4.1. A Network Flow Oriented Heuristic NPETP.

The key idea here is to consider the arcs e of the tree A as resources, likely to be exchanged by

evacuation jobs i, j whose paths (i) and (j) share arc e. According to this purpose, we extend

above NPETP model by introducing, for any pair (i,j) and any arc e in the set Arc(i,j) = (i) 

(j), the part wi,j,e of access rate to e which is given by i to j. We see that resulting vector w has to

comply with the following flow constraints (E3):

o For any j = 1..N, e in (i):  i such that e  Arc(x,y) wi,j,e = vi =  i such that e  Arc(j,i) wj,i,e; (E3)

We see that the main difficulty here is that we must choose between assigning high rates vj to

jobs j and let them monopolize the access to transit arcs of A, or conversely restricting vj in order

to make j share its arcs. In order to deal with it we design a 2 step NPETP approach:

NPETP Algorithmic scheme:

First step (conservative approach):

Starts from deadlines D(j), j = 1..N; Not Stop;

While Not Stop do

Look for a feasible Schedule (T, v, T*);

If Fail then Stop Else decrease deadlines D(j), j = 1..N, in order to force values

T*j to decrease and so improve the Safety Margin criterion.

Second step: Improve the solution by making evacuation rates vj increase (and so dates

T*j decrease), through resolution a specific linear program on vectors w and v.

Then the core of NPETP Algorithm is related to the “Look for a feasible Schedule (T, v, T*)”

instruction of the “While” loop of the first step. We do it while relying on above flow vector w

and providing every job with no more than what it needs in order to be achieved in time:

Start from some linear ordering  defined on N; Not Success; Not Failure;

While Not Success and Not Failure do

 Scan  j0 being current job, values vj, Tj and (j,e) = access level to arc e that job j

can transmit to j0 have been computed for any j prior to j0 in s; 

Then: 

(1) : Scan path (j0): for any e in (j0), compute flow values wj,j0,e, j prior to j0

in , in such a way T*j0 ≤ D(j0); Derive vj0 = Sup e ( j wj,j0,e) and related arc e0;

(2) : Increase the wj,j0,e for e  e0 in order to make job j0 run at the same rate for

all arcs e of(j0).

If Not Success then modify  accordingly and update Failure.

4.2. A Constraint Programming Approach for a Discrete Version of the NPTEP Model.

This approach associates with every variables vj, Tj, j = 1..N, finite discrete domains, and apply

the constraint propagation techniques which are at the core of the IBM CP Optimizer Software. All

details are provided in [1]. Because of the rounding of values vj, Tj, j = 1..N, it is also a heuristic

approach.

5. Numerical Experiments

Purpose/Technical context: Algorithms were implemented C++, Windows 10, Visual Studio

2017, on PC with 16Go de RAM, Intel Core i5-8400 CPU @ 2.80GHz. Our goal was to evaluate

both ability of the NPETP algorithm to yield good solutions and the accuracy of the optimistic

upper bounds of Section III, while using results obtained in [1] through constraint programming

(CPO Optimizer) as reference results.

Instances/outputs: They are as in [1]. The main characteristics of an instance is the number N

of populations. We consider several instance packages, with, for any package, the number S which

denotes the number of instances inside the package.

Outputs: For every instance package, we compute:

 resCPO = reference value through IBM-CPO in no more than 100 s (CPU).

 optCPO = number of instances such that IBM-CPO could achieve optimality of the discrete

approximation of NPETP.

 NPETP = Value obtained through NPETP Algorithm; cpuNPEP = Related CPU time.

 UB1 = Optimistic (upper) bound UB-Arc; UB2 = Optimistic bound UB-Tree.

CPU times for the computation of both UB1 and UB2, since they never exceed 0.1 s.

Then the following table provides a summary of our results:

N S resCPO optCPO NPETP cpuNPETP(s) UB1 UB2

10 15 104,00 12,00 97,96 0,56 112,16 107,16

15 16 69,81 12,00 65,14 0,79 78,53 73,94

20 11 40,09 8,00 42,36 1,30 51,28 43,58

25 5 8,40 0,00 43,80 1,17 70,30 49,20

Comments: The model handled by IBM-CPO is an approximation of NPETP model, and so

NPETP algorithm obtains in some cases better results that IBM-CPO, even when IBM-CPO

concludes to optimality. In any case, NPETP, whose computation times are very small,

outperforms IBM-CPO as soon as the size of the problem increases. We also see that the Tree

Upper Bound UB2 provides us with a very efficient estimation of the optimal NPETP value, since

the gap between UB2 and Inf(resCPO, NPETP) is in average 5% (it tends to increase with the size

of the instance).

Acknowledgements

This work is partially funded by the H2020-MSCA -2015 U.E project GEO-SAFE.

References

[1]. Artigues.C, Hebrard.E, Pencolé.Y, Schutt.A, Stuckey.P: “A study of evacuation planning for

wildfires”; 17 th Int. Workshop on Constraint Modelling/Reformulation, Lille, France, (2018).

[2]. Bayram.V : “Optimization models for large scale network evacuation planning and

management : a review “; Surveys in O.R and Management, (2016)

[3]. Even.C, Pillac.V, Van Hentenryk.P: “Convergent plans for large scale evacuation”; In Proc.

29 th AAAI Conf. On Artificial Intelligence, Austin, Texas, p 1121-1127, (2015).

[4].Intini.P, Gwynne.S.M, Ronchi.E, Pel.A : “Traffic modeling for wildland urban interface fire

evacuation” ; Jour. Transportation Eng. A, 145, 3 (2019)

[5].Orji.M.J, Wei.S. “Project Scheduling Under Resource Constraints: A Recent Survey”. Inter.

Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 2, (2013)

[6]. Quilliot.A, Toussaint.H: “Flow Polyedra and RCPSP”, RAIRO-RO, 46-64, p 379-409, (2012)

[7]. Veeraswamy.A, Galea.E, .Filippidis.L, Lawrence.P, Haasanen.S, Gazzard.R.J, TSmith.T.E:

“The simulation of urban scale scenarios with application to the Swinly forest fire”; Safety

Science 102, p 178-193, (2018).

