
1

Local Search Algorithm to Solve a Scheduling Problem
in Healthcare Training Center?

Simon Caillard1,2, Laure Brisoux Devendeville1 and Corinne Lucet1

1 Laboratoire MIS (EA 4290), Université de Picardie Jules Verne
33 rue Saint-Leu, 80039 Amiens Cedex 1, France

{simon.caillard, laure.devendeville, corinne.lucet}@u-picardie.fr
2 Health Simulation Center SimUSanté R©

Amiens University Hospital, France
simon.caillard@chu-amiens.fr

Keywords: Scheduling, Local search, Healthcare training, Timetabling.

1 Introduction

SimUSanté, located in Amiens, France is one of the biggest healthcare training center in
Europe. All kinds of health actors: professionals, patients, students use this center and can
meet and train together by simulating medical acts in various fields of healthcare but also
attending regular courses, for a total of more than 500 different formations. The problem
faced by SimUSanté is a scheduling problem that consists in planning a set of training
sessions respecting a set of time and resource constraints.

Scheduling problems are NP-Complete (Cooper, T.B. and Kingston, J.H. 1995). SimU-
Santé’s problem belongs to this family of problems and specifically to the Curriculum-Based
Courses Timetabling Problem (CB-CTT)(Di Gaspero L. et. al. 2007) which consists in find-
ing the best weekly assignment for university lectures, available rooms and time periods for
a set of classes under a set of hard and soft constraints. However, some features of SimU-
Santé’s problem differ from CB-CTT ones, such as resources types, skills and precedence
constraints required for activities, lunch break management, and objective function. An-
other way would be to consider CB-CTT as a variant of the Resource-Constrained Project
Scheduling Problem (RCPSP)(Brucker, P. AND Knust, S. 2001). In this case, we need
to add the followings constraints : some activities cannot be planned in parallel and each
resource can have more than one type.

We present in this paper a local search algorithm SimuLS, based on dedicated neighbor-
hood operators to solve SimUSanté’s problem. We generated adequate instances3 inspired
by those used in CB-CTT. We then compared the results obtained by SimuLS with those
worked out by the mathematical model implemented in CPLEX and a dedicated greedy
algorithm SimuG (Caillard S. et. al. 2020).

The paper is organized as follows: in section 2, we briefly formalize the scheduling
problem encountered by SimUSanté and describe how a solution is evaluated. In section
3 we present our local search algorithm SimuLS and give the different operators used in
order to explore the search space. Section 4 provides computational results. Finally, section
5 concludes this paper and presents some perspectives.

2 Formalization and evaluation

The problem encountered by SimUSanté is to schedule a set of training sessions S
over a determined period T . A training session s ∈ S is composed by a set of activities As.
? This project is supported by region Hauts-de-France and Health Simulation Center SimUSanté
3 SimUSanté instances available on: https://mis.u-picardie.fr/Benchmarks-GOC

2

A =
⋃

s∈S UAs represents the set of all activities. Activity a ∈ A has a specific duration and
requires different types and quantities of resources. Activities can be linked by precedence
constraints. In addition, there is a set of resources R which is composed by employees,
rooms and materials. Each resource r ∈ R is associated to one or more types of resources.
For example a room can have both meeting room and classroom types.

Solution Sol is a set of triplets (a, ta, Ra) where a ∈ A is an activity, ta ∈ T the starting
time slot of a, and Ra ⊆ R the set of avalaible resources assigned to a, from ta and for its
total duration durationa. The set of scheduled activities is denoted SA = {a|(a, ta, Ra) ∈
Sol}, with (SA ⊆ A). The set of unscheduled activities is denoted UA = A \ SA. For
session s ∈ S, Sols ⊆ Sol, represents the set of triplets of the solution related to s, with
Sols = {(a, ta, Ra) ∈ Sol|a ∈ As}. SAs = SA ∩ As, is the set of scheduled activities of s,
and UAs = As \ SAs, the set of unscheduled activities of s.

For a given session s ∈ S, if at least one activity has been scheduled (SAs 6= ∅), start
date tstarts = min{ta, a ∈ SAs}, and end date tends

= max{ta+durationa, a ∈ SAs} allow
to compute the corresponding makespan mks = tends − tstarts of session s. If no activity
has been scheduled (SA = ∅), then mks = 0.

The evaluation of Sol, denoted Makespan(Sol), is the sum of the makespans of all
sessions, plus the amount of unplanned activities, multiplied by penalty α (see equation
1). The objective is to find a valid solution with a minimum Makespan.

Makespan(Sol) =
∑
s∈S

mks + |UA| × α (1)

3 Local search algorithm: SimuLS

SimuLS is a local search algorithm that explores the solution space by applying neigh-
borhood operators, starting from a solution provided by a greedy algorithm, SimuG
(Caillard S. et. al. 2020). For a maximum preset limitCounter iterations, SimuLS re-
lies on saturator operator to plan unscheduled activities and when it is not possible, it
uses several operators: intra, extra and extra+. Each of these operators checks possible
movements and applies one. If the best solution ever met is not improved after a preset
noImprov iterations, a part of the solution is destroyed by the destructor operator, in
order to escape from a local minimum.

A movement is caracterized by a couple < (a, ta, Ra) ; Υ >. (a, ta, Ra) represents a
triplet that will be added to the current solution, with a ∈ UA, an unscheduled activity,
ta ∈ T , a time slot from which a could be started, and Ra, the set of resources assigned to
a , that exactly matches its resources requirement. In order to plan a, we need to remove a
set Υ of triplets from the solution. Υ = {(b1, tb1 , Rb1), . . . , (bn, tbn , Rbn)}, n ∈ {1, . . . |Sol|}.
The set of resources Ra can be composed by resources directly available over T , plus thoses
released by canceling all activities of Υ . A movement respects all operational rules and
resources constraints.

The choice of a movement by an operator relies on criteria such as makespan mks of
impacted sessions, global makespanMakespan, the number of canceled activities, etc. The
different operators present in SimuLS are:
saturators: This operator tends to place an unscheduled activity a ∈ UAs without chang-

ing the current solution. It builds a set of movements M :{< (a, t1a, Ra); ∅ >, . . . , <
(a, tka, Ra); ∅ >} so that for each movement < (a, tia, Ra) ; ∅ >∈ M , with i ∈ [1; k],
[tia; t

i
a + durationa[∩[tb; tb + durationb[= ∅ ∀(b, tb, Rb) ∈ Sols.

intras: This operator removes one or more scheduled activities from session s in or-
der to plan an unscheduled activity a ∈ UAs. It builds a set of movements M :{<
(a, t1a, Ra);Υ >, . . . , < (a, tka, Ra);Υ >} so that for each movement < (a, tia, Ra);Υ > ∈
M , with i ∈ [1; k] and Υ ⊆ Sols, the following properties are verified:

3

– [tia; t
i
a + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ

– [tia; t
i
a + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ {Sols \ Υ}

extras: This operator removes one or more scheduled activities from a randomly selected
session s′ 6= s, in order to plan an unscheduled activity a ∈ UAs. It builds a set of
movements M :{< (a, t1a, Ra);Υ >, . . . , < (a, tka, Ra);Υ >} so that for each movement
< (a, tia, Ra);Υ >∈ M , with i ∈ [1; k] and Υ ⊆ Sols′ , the following properties are
verified:
– [tia; t

i
a + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ

– [tia; t
i
a + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ Sols

extra+s : This operator is an extension of extras. The canceled activities can belong to a set
of sessions {s′1, . . . , s′k} ⊆ S. For activity a ∈ UAs, it builds a set of movements M :{<
(a, t1a, Ra);Υ >, . . . , < (a, tka, Ra);Υ >} so that for each movement < (a, tia, Ra);Υ >∈
M , with i ∈ [1; k] and Υ ⊆ Sol, the properties below are verified :
– [tia; t

i
a + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ

– [tia; t
i
a + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ {Sols \ Υ}

destructor: This operator destroys a part of current solution Sol. It builds and applies
a set of movements M :{< ∅ ; {(a1, ta1 , Ra1} >, . . . , < ∅ ; {(ak, tak

, Rak
} > so that

∀i ∈ [1; k], (ai, tai , Rai) ∈ Sol represents the triplet that will be removed from the Sol.

Algorithm 1 : SimuLS
Input: Sol (the current solution), S (set of sessions), ∀s ∈ S,UAs (set of unscheduled activities
for session s), UA =

⋃
s∈S UAs (the set of unscheduled activities), noImprov, limitCounter

noBest← 0
counter ← 0
Sol← saturator(UA)
bestSol← Sol
while counter < limitCounter do

if (noBest = noImprov) then
Sol← destructor(Sol)
noBest← 0

end if
if UA 6= ∅ then

a← random(UA)
s← (s/a ∈ UAs)
Sol← selectOperator({intra, extra, extra+}, s, a)

end if
Sol← saturator(UA)
if Makespan(Sol) < Makespan(bestSol) then

noBest← 0
bestSol← Sol

else
noBest← noBest+ 1

end if
counter ← counter + 1

end while

In order to choose which operator to apply between intra, extra, extra+, SimuLS
uses the SelectOperator function that uses two specific counters csextra and caextra+ . The
first one, csextra, counts the number of times where intra have been consecutively applied
to session s. The second one counts how many times activity a remained consecutively
unscheduled. By default, operator intra is applied, except whenever one of these counters
reaches a preset limit, selectOperator then activates the operator that corresponds to the
counter. In case of equality between the two counters, extra+ is always used first.

4

4 Experimental study

A mathematical model has been implemented under CPLEX. It provides optimal re-
sults for small instances with a running time of two hours or more. Table 4 presents the
comparison between CPLEX, SimuG and SimuLS on SimUSanté instances. Penalty α is
set to |T |. SimuLS was implemented in Java, on an Intel i7 7500U processor. The time
used to find solutions is always less than 1 second for the greedy algorithm SimuG and less
than 1 minute for SimuLS. The numbers in parentheses after some if the results, represent
the amount of unscheduled activities.

Table 1. Results for Brazil1 and Italy1 instances
Instance Brazil1 Instance Italy1

Instance cplex SimuG SimuLS Instance cplex SimuG SimuLS
D0T0C0A0 81 86 83 D0T0C0A0 101 105 102
D0T0C1A0 81 87 82 D0T0C1A0 101 104 101
D0T1C0A1 94 232 (4) 110 D0T1C0A1 107 150 (1) 116
D0T1C1A1 94 232 (4) 108 D0T1C1A1 107 187 (2) 115
D1T0C0A0 81 89 85 D1T0C0A0 101 104 104
D1T0C1A0 81 94 90 D1T0C1A0 101 104 104
D1T1C0A1 96 161 (2) 107 D1T1C0A1 107 150 (2) 114
D1T1C1A1 96 166 (2) 110 D1T1C1A1 107 180 (3) 115

Columns cplex, SimUG and SimULS represent respectively the optimums, the results
of greedy algorithm and those of the local search algorithm. By the nature of a greedy
algorithm, SimUG cannot scheduled all activities (see instances D0T1C0A1, D0T1C1A1,
D1T1C0A1, D1T1C1A1). In this case, a penalty α is applied, and the corresponding score
is rising up to 246% from optimality. In contrast, Cplex and SimULG always schedule all
activities. SimULG reaches optimality for Italy−D0T0C1A0 instance, and always improves
the results obtained by the greedy algorithm. The gap with optimality is less than 18%.

5 Conclusion

In this paper we have briefly introduced SimUSanté’s problem and proposed a local
search algorithm SimuLS to solve it. SimuLS is based on five neighborhood operators
dedicated to SimUSanté’s problem. Four of them allow to schedule activities but only one
without modify solution. The last operator destroys the solution in order to escape from
a local minimum. SimuLS is experimented on instances from CB-CTT, adapted to the
SimUSanté’s problem. The results obtained are compared to the optimal solutions provided
by CPLEX. Contrary to SimuG, all activities are scheduled by SimuLS. It is a first step
towards building an efficient metaheuristic to solve SimUSanté’s problem.

References

Brucker, P. AND Knust, S., 2001, “Resource-Constrained Project Scheduling and Timetabling",
Springer, Burke E., Erben W. (eds) Practice and Theory of Automated Timetabling III.

Caillard S., Brisoux-Devendeville L., and Lucet C., 2020, “A Planning Problem with Resource
Constraints in Health Simulation Center", Springer, Le Thi H., Le H., Pham Dinh T. (eds)
Optimization of Complex Systems: Theory, Models, Algorithms and Applications.

Cooper, T.B. and Kingston, J.H., 1995, “The complexity of timetable construction problems",
Springer, Burke E., Ross P. (eds) Practice and Theory of Automated Timetabling.

Di Gaspero, L. and McCollum, B. and Schaerf, A., 2007, “Curriculum-based CTT - Technical
Report", The Second Int. Timetabling Competition

Schaerf A., 1999, “A Survey of Automated Timetabling", Artificial Intelligence Review, Vol. 13,
pp. 87-127.

