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1 Introduction

We study the dynamic stochastic resource-constrained multi-project scheduling problem
where projects arrive stochastically over time. Each project has a deterministic network
and deterministic resource demand of activities, however, activity durations are stochastic.
Resource availabilities provided for processing all projects are deterministic. The objective
is to minimize average weighted �ow times. We propose a new solution approach which,
for each interarrival time of projects, calculates a scheduling policy and executes the latter
until a new project arrives. The generation of scheduling policies is based on the stochastic
resource-constrained (single) project scheduling problem (SRCPSP). In a computational
study we assess several policy approaches which have been proposed for SRCPSP. The
remainder of the paper is organized as follows: In Section 2 we review the relevant literature.
In Section 3 we detail our solution approach and in Section 4 we provide information about
our computational study.

2 Literature Review

The relevant literature for our study stems from two main streams of research, namely
the stochastic resource-constrained project scheduling problem and the dynamic stochastic
multi-project scheduling problem.

A number of contributions have been presented for the stochastic resource-constrained
project scheduling problem (SRCPSP). Stork (2001) develops exact solution procedures
to solve the SRCPSP by employing preselective, linear preselective, activity-based and
earliest start policies in a branch-and-bound framework. Another exact model is presented
by Creemers (2015): Under the assumption of PH-distributed activity durations, Creemers
develops a model that employs a backward stochastic dynamic-programming recursion
solution procedure.

Golenko-Ginzburg and Gonik (1997) present a heuristic solution approach that solves
a 0-1 integer programming model at each decision point in order to determine which ac-
tivity to process next. Tsai and Gemmill (1998) employ Tabu Search as well as Simulated
Annealing to schedule activities in an SRCPSP-setting. Ballestín (2007) employs activity-
based priority policies in combination with sampling procedures and a genetic algorithm
to generate precedence-feasible activity lists. A similar approach based on activity-based
priority policies is adapted by Ballestín and Leus (2009) who present a greedy randomized
adaptive search procedure (GRASP). A novel solution procedure is presented by Ashtiani
et al. (2011) who propose a new class of preprocessor policies encompassing resource-based
and earliest start policies by heuristically inserting new precedence constraints of the type
�nish-to-start into the project network. This concept of preprocessor policies is further



developed by Rostami et al. (2018). By introducing additional start-to-start constraints,
the authors propose a new class of so-called generalized preprocessor policies.

Only limited work is available for the dynamic stochastic multi-project scheduling prob-
lem. Adler et al. (1995) were the �rst to extend the single stochastic project scheduling
problems to a dynamic multi-project setting. Employing the real-life example of a prod-
uct development organization, they develop an empirically-based framework for analysing
development time in such a context. Choi et al. (2007) model this dynamic stochastic multi-
project scheduling problem as a Markov decision process and employ a Q-learning based
approach to heuristically determine policies for starting activities. Melchiors and Kolisch
(2009) proceed likewise, however solve the Markov decision process by value iteration. Ex-
tensive computational studies are provided by Melchiors (2015), in which the author evalu-
ates di�erent priority rules in the dynamic multi-project setting. Fliedner (2015) evaluates
sampling procedures as well as the genetic algorithm proposed by Hartmann (1998) in an
experimental setup.

Our work extends the current body of literature by examining the applicability of the
most recently proposed solution procedures to the SRCPSP in the context of stochastic
and dynamic multi-project scheduling.

3 Proposed Solution Procedure

In comparison to proactive and reactive scheduling, which both rely on the determi-
nation of a baseline schedule to address uncertainty, we focus our research on stochastic
scheduling where no initial schedule is determined. Following this approach, scheduling de-
cisions are made "online" and solutions take on the form of policies that only utilize a-priori
knowledge of activity duration distributions as well as the information that is available at
the corresponding decision point in time when an activity is completed. Regarding this
non-anticipativity constraint, these scheduling policies gradually build a schedule during
the project's execution as actual realizations of uncertain activity durations unfold. This
is achieved via the combination of a heuristically predetermined ordered activity list and a
schedule generation scheme that is applied in the dynamic multi-project stochastic setting.

The proposed solution procedure employs an activity-on-node representation of the
project network: Whenever a new project enters the system, the network of the arriving
project as well as the networks of the projects still in the system are combined to a super-
network which consists of all project activities, which still have to be processed or are being
processed. For activities currently being in process, distributions of activity durations will
be updated based on the so far observed duration. Until the arrival of the next project, the
super-network can be viewed as multi-project SRCPSP instances to which we can apply
SRCPSP solution methods. However, as even the SRCPSP is known to be NP-hard, we
focus our e�orts solely on heuristic procedures and resort to a discrete-event simulation
approach. With the objective of minimizing average weighted �ow times of projects, we
evaluate the policies against the lower bound derived by the critical path length of the
deterministic equivalent of the project.

3.1 Experimental Study

We evaluate four of the SRCPSP-solution procedures outlined above, namely the regret-
based biased random sampling method and the genetic algorithm of Fliedner (2015) as well
as preprocessor policies proposed by Ashtiani et al. (2011) and generalized preprocessor
policies suggested by Rostami et al. (2018). From a theoretic standpoint, preprocessor poli-
cies should, as a superset of the earliest start and resource-based policy classes, strictly



dominate the class of resource-based policies. Analogously, the class of generalized prepro-
cessor policies should strictly dominate all other policy classes as it entails all resource-
based, earliest start and activity-based policies. In order to account for this, we restrict the
allotted computation time for each policy generation by limiting the number of generated
schedules. Also, in contrast to the proposed class of (generalized) preprocessor policies,
we do not evaluate every possible additional predecessor constraint. To limit the compu-
tational e�ort, we only consider additional predecessor constraints that concern activities
whose expected start or �nish times lie within a small time window starting from the cur-
rent decision point: As new projects arrive and the solution procedure is repeated, more
informed decisions regarding the inclusion of additional predecessor constraints can then
be made at a later point in the simulation.

The setup for the proposed experimental study is based on Fliedner (2015). The selec-
tion of two uniform distribution (U1, U2), two beta distributions (B1, B2) and an expo-
nential distribution (EXP) for activity durations is in line with Ballestín and Leus (2009).
We further assume known true means of the activity duration distributions.

Using the ProGen/max generator by Schwindt (1995) we generate 120 di�erent RCPSP
problem instances where each project consists of |N|= 15 non-dummy activities and |K|=
4 di�erent renewable resources. The average number of required resources is controlled by
the resource factor and set to either 0.25, 0.5, 0.75 or 1. The arrival of new projects follows
a Poisson process with arrival rate λ. In order to evaluate several levels of resource scarcity,
we adjust λ which then results in di�erent average utilization levels u ∈ 0.5, 0.7, 0.9. Newly
arriving projects are all of the same type.

After a steady number of projects in the system is reached, the �ow times of 200
successive projects are averaged and compared to the critical path of the deterministic
equivalent. We conduct a full-factorial experimental study with the parameters summarised
in Table 1. Simulation results will be presented.

Table 1. Level of problem parameters

Paramter Value

|K| 4
RF 0.25, 0.5, 0.75, 1
u 0.5, 0.7, 0.9
Distribution U1, U2, B1, B2, EXP
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