
1

Heuristics for Scheduling Pipe-laying Support Vessels:
An Identical Parallel Machine Scheduling Approach

Victor Abu-Marrul1, Davi Mecler1, Rafael Martinelli1, Silvio Hamacher1
and Irina Gribkovskaia2

1 Industrial Engineering Department, Pontifical Catholic University of Rio de Janeiro, Brazil
{victor.cunha,davizm}@tecgraf.puc-rio.br, {martinelli,hamacher}@puc-rio.br

2 Molde University College - Specialized University in Logistics, Norway
irina.gribkovskaia@himolde.no

Keywords: Ship Scheduling, Offshore Logistics, Heuristic, Parallel Machine Scheduling.

1 Introduction and Problem Description

We address a problem that emerges in oil & gas offshore logistics where a company
needs to schedule its fleet of pipe laying support vessels (PLSV), responsible for con-
necting sub-sea oil wells to production platforms. We model it as an identical parallel
machine scheduling problem with non-anticipatory family setup times. Here, the vessels
are machines, jobs are wells, and each job includes a number of connecting operations. The
problem consists of scheduling a set O of operations from a set F of families in a set M of
machines. Each operation i ∈ O belongs to a family (fi), has a release date (ri), a process-
ing time (pi), a load occupancy (li), can be assigned to an eligible subset of machines (Mi),
and is associated with a subset of jobs (Ni). Each job j ∈ N has a weight (wj) according
to the related well production rate, and a subset Oj of the operations associated with it.
Each machine k ∈ M has a release date (rk) and a capacity (qk). A non-anticipatory family
setup time (sf) is incurred before the first operation on each machine, whenever a machine
changes the execution of operations between families, and when the capacity of a machine
is reached. A set of operations that shares the same setup time is called a batch. Setups are
non-anticipatory since they can only start when all operations scheduled inside a batch are
released. The sum of the load occupancy of the operations assigned to a batch must respect
the machine capacity. The objective is to minimize the total weighted completion time of
jobs (

∑
j∈N wjCj), where the completion time of job j (Cj) is the maximum completion

time of the associated operations (Cj = maxi∈Oj Ci). This objective aims to complete the
connections of the most productive oil wells as soon as possible. An example of a PLSV
schedule is depicted in Figure 1 with 15 operations, 5 jobs, and 4 machines. The associated
jobs are shown in the boxes, and their completion times are marked with dotted lines.

DEI
DEPARTAMENTO
DE ENGENHARIA
INDUSTRIAL

𝒔𝟏 𝐽𝑜𝑏𝑠 1 𝑎𝑛𝑑 3 𝒔𝟑 𝐽𝑜𝑏𝑠 2, 3 𝑎𝑛𝑑 4 𝒔𝟐 𝐽𝑜𝑏 3 𝒔𝟏 𝐽𝑜𝑏 5

𝒔𝟐 𝐽𝑜𝑏 1 𝒔𝟏 𝐽𝑜𝑏𝑠 2 𝑎𝑛𝑑 5 𝒔𝟏 𝐽𝑜𝑏 5

𝒔𝟏 𝐽𝑜𝑏𝑠 4 𝑎𝑛𝑑 5 𝒔𝟐 𝐽𝐽𝑜𝑏𝑠 1 𝑎𝑛𝑑 3 𝒔𝟑 𝐽𝑜𝑏 3 𝐽𝑜𝑏 5

t

𝑀1

𝑀2

𝑀3

𝑀4

𝑂𝑝. 4 𝑂𝑝. 10 𝑂𝑝. 1

𝑂𝑝. 9 𝑂𝑝. 8 𝑂𝑝. 11 𝑂𝑝. 5

𝑂𝑝. 12 𝑂𝑝. 3 𝑂𝑝. 13 𝑂𝑝. 2

𝑂𝑝. 14 𝑂𝑝. 6 𝑂𝑝. 15 𝑂𝑝. 7

𝑪1

𝑪4 𝑪3

𝑪5

𝑪2

Setup

Operations

Machine idleness

Machine release date

𝒔𝟑 𝐽𝑜𝑏𝑠 1 𝑎𝑛𝑑 5 𝐽𝑜𝑏 2 𝒔𝟏 𝐽𝑜𝑏 3 𝒔𝟏 𝐽𝑜𝑏 3

Fig. 1: PLSV Scheduling example with 15 operations, 5 Jobs and 4 machines.

2

2 Solution Methods

We present several constructive heuristics to solve the PLSV scheduling problem, using
dispatching rules, and defining how to do the machine assignment and to construct batches.
The schedule construction procedure used in all heuristics is presented in Algorithm 1. To
describe the procedure, we introduce variables and sets: Sk (Start time of the current batch
on machine k), Lk (Cumulative load of the current batch on machine k), Fk (Family of the
current batch on machine k), Ck (Completion time of machine k), same (Boolean variable
that defines if the chosen operation will be assigned to the last position in the current batch
or to a new batch), Bk (Set of operations assigned to the current batch on machine k) and U
(Set of unscheduled operations). The procedure returns a list of schedules σ = (σ1, . . . , σk)
for each machine k containing operations and families (representing the setup times).

Algorithm 1: Schedule Construction Procedure
1: Ck ← rk, Sk ← rk, Lk ← 0, Fk ← 0, Bk ← ∅, σk ← ∅ : ∀k ∈M
2: Ci ←∞ : ∀i ∈ O
3: U ← O
4: while there exists operations not assigned do
5: Select operation i∗ ∈ U and machine k∗ ∈Mi∗ according to a chosen heuristic, defining

same as true or false
6: if same = true then
7: Sk∗ ← max(ri∗ , Sk∗), Ck∗ ← Ck∗ +max(0, ri∗ − Sk∗) + pi∗

8: Lk∗ ← Lk∗ + li∗ , Bk∗ ← Bk∗ ∪ {i∗}
9: else
10: Sk∗ ← max(ri∗ , Ck∗), Ck∗ ← max(ri∗ , Ck∗) + sfi∗ + pi∗

11: Lk∗ ← li∗ , Bk∗ ← {i∗}, σk∗ ← σk∗ ∪ {fi∗}
12: end if
13: σk∗ ← σk∗ ∪ {i∗}, Fk∗ ← fi∗ , Ci∗ ← Ck∗ , U ← U \ {i∗}
14: end while
15: return σ

The main part of the method is defined at line 5, the decision of the next operation,
machine, and batch composition. We consider two approaches at this step. In both, when
we evaluate the insertion of an operation to an existing batch, we consider the delay on
the start time of this batch that may occur due to the inserted operation release date and
the non-anticipatory setup consideration. This delay changes the completion time of all
operations scheduled in the batch, and it is penalized using the operations weights. We
develop rules to estimate weights for the operations (wi), since weights in our problem are
related to jobs. Five rules for estimating weights are considered:

– MAX: Maximum weight of associated wells, computed as wi = maxj∈Ni
wj

– SUM: Sum of the weights of associated wells, computed as wi =
∑

j∈Ni
wj

– AVG: Average weight of associated wells, computed as wi =
∑

j∈Ni
wj/|Ni|

– WAVG: Weighted average weight of associated wells, computed as wi =
∑

j∈Ni
wj/|Oj |

– WAVGA: WAVG adjusted at each iteration by the set of unscheduled operations (i.e., it
replaces subsets Oj by subsets Uj of unscheduled operations associated to a job j).

In the first approach, we initially select the next operation based on a dispatching rule,
and then assign an eligible machine to this operation according to the minimum weighted
completion time, as described in Algorithm 2. New variables and sets are defined: ∆ik

(Delay at the start time of the current batch on machine k due to the insertion of operation
i), CCB

ik (Completion time of operation i if inserted in the current batch on machine k),
CNB

ik (Completion time of operation i if inserted in a new batch on machine k), CB (Set
of feasible assignments cbik of operation i into the current batch on machine k) and NB
(Set of feasible assignments nbik of operation i into a new batch on machine k).

3

Algorithm 2: Operation and Machine Disjunctive Selection Procedure
1: Select operation i∗ ∈ U according to a chosen dispatching rule
2: ∆i∗k ← max(0, ri∗ − Sk) : ∀k ∈Mi∗

3: CCBi∗k ← Ck +∆i∗k + pi∗ : ∀k ∈Mi∗

4: CNBi∗k ← max(ri∗ , Ck) + sfi∗ + pi∗ : ∀k ∈Mi∗

5: CB ←

{
cbi∗k = wi∗C

CB
i∗k +

∑
ı̂∈Bk

wı̂∆i∗k | k ∈Mi∗ , Fk = fi∗ , Lk + li∗ ≤ qk

}

6: NB ←

{
nbi∗k = wi∗C

NB
i∗k | k ∈Mi∗

}
7: bmin ← min{b : b ∈ (CB ∪ NB)}
8: Select k∗ corresponding to bmin
9: if bmin ∈ CB then same← true
10: return i∗, k∗, same

We consider six dispatching rules for this approach. The priority value πi indicates
the next operation to schedule. At each iteration, the operation i with the largest πi
value is selected (Ðurasević and Jakobović 2018). We adapt some rules by adding family
setup times, and assume that every operation will be assigned to a new batch. Ti is the
minimum completion time among the eligible vessels for each operation i, and is computed
as Ti = mink∈Mi

Ck. The following dispatching rules are considered:

– ERD: Earliest Release Date πi = 1/ri.
– SPT: Shortest Processing Time πi = 1/pi.
– LPT: Longest Processing Time πi = pi.
– MCT: Minimum Completion Time πi = max(Ti, ri) + pi + sfi .
– WSPT: Weighted Shortest Processing Time πi = wi/pi.
– WMCT: Weighted Minimum Completion Time πi = [max(Ti, ri) + pi + sfi]/wi.

The second approach extends one of the heuristics from Weng et al.(2001), by consider-
ing the PLSV scheduling properties, such as the release dates of operations and machines,
the family setup times and the batch composition, to decide at each iteration the next pair
operation/machine simultaneously (Algorithm 3). We call it WMCT-Pair.

Algorithm 3: Operation and Machine Simultaneous Selection Procedure
1: ∆ik ← max(0, ri − Sk) : ∀i ∈ U , k ∈Mi

2: CCBik ← Ck +∆ik + pi : ∀i ∈ U , k ∈Mi

3: CNBik ← max(ri, Ck) + sf i + pi : ∀i ∈ U , k ∈Mi

4: CB ←

{
cbik =

CCB
ik
wi

+
∑
ı̂∈Bk

∆ik
wı̂
| i ∈ U , k ∈Mi, Fk = fi, Lk + li ≤ qk

}

5: NB ←

{
nbik =

CNB
ik
wi
| i ∈ U , k ∈Mi

}
6: bmin ← min{b : b ∈ (CB ∪ NB)}
7: Select i∗ and k∗ corresponding to bmin
8: if bmin ∈ CB then same← true
9: return i∗, k∗, same

3 Computational Experiments

We introduce in total 19 heuristics, where 4 do not consider weights and 15 combine the
dispatching rules and the ways of estimating the operations’ weights. We tested all of them
on a set of 72 PLSV instances3 with |M| = {2, 4}, and |O| = {15, 25, 50}. We performed
3 available at https://doi.org/10.17771/PUCRio.ResearchData.45799

4

the experiments on a computer with 64 GB of RAM and Intel Core i7-8700K CPU of
3.70GHz, using C++ for coding the heuristics and running Linux. The results of tests, in
terms of the average relative deviations from the best generated solutions, are presented in
Table 1. Each instance group, defined by the number of operations and machines, contains
12 instances. The relative deviation is computed as RDh

inst = TWC h
inst/TWC best

inst, where
TWC h

inst is the total weighted completion time of heuristic h ∈ H applied to instance
inst ∈ I, and TWC best

inst is the best solution obtained for a given instance. The best result
for each instance group is shown in bold. All heuristics run in less than 0.1 seconds. Last
column (#BKS) accounts how many times each heuristic yields the best solution.

Table 1: Average deviations from the best solutions.

Heuristic
Instance Group (|O| – |M|)

All
Instances #BKS15-4 15-8 25-4 25-8 50-4 50-8

ERD 1.212 1.198 1.245 1.190 1.261 1.250 1.226 2
SPT 1.278 1.217 1.363 1.296 1.442 1.392 1.331 1
LPT 1.347 1.153 1.412 1.265 1.471 1.398 1.341 0
MCT 1.226 1.165 1.268 1.248 1.254 1.295 1.243 0
WSPT-MAX 1.161 1.079 1.224 1.173 1.299 1.255 1.198 1
WSPT-SUM 1.156 1.066 1.181 1.141 1.280 1.241 1.178 0
WSPT-AVG 1.181 1.085 1.266 1.187 1.327 1.294 1.223 1
WSPT-WAVG 1.124 1.076 1.184 1.124 1.234 1.196 1.156 0
WSPT-WAVGA 1.085 1.041 1.112 1.067 1.138 1.114 1.093 3
WMCT-MAX 1.084 1.040 1.070 1.088 1.046 1.096 1.071 7
WMCT-SUM 1.063 1.046 1.093 1.082 1.158 1.132 1.096 3
WMCT-AVG 1.101 1.027 1.123 1.118 1.150 1.147 1.111 4
WMCT-WAVG 1.065 1.036 1.041 1.059 1.111 1.084 1.066 5
WMCT-WAVGA 1.023 1.021 1.013 1.016 1.027 1.003 1.017 34
WMCT-Pair-MAX 1.086 1.043 1.063 1.082 1.036 1.091 1.067 9
WMCT-Pair-SUM 1.063 1.043 1.087 1.071 1.151 1.124 1.090 4
WMCT-Pair-AVG 1.101 1.027 1.123 1.107 1.136 1.136 1.105 2
WMCT-Pair-WAVG 1.060 1.035 1.045 1.050 1.100 1.076 1.061 7
WMCT-Pair-WAVGA 1.029 1.023 1.024 1.018 1.026 1.005 1.021 19

Note that among the heuristics, WCMT-WAVGA generated the best average solutions for 5
of 6 groups with the best average deviation of 1.003, achieved on group 50-8. This heuristic
also found the highest number of best solutions, on 34 of 72 instances.

4 Conclusions

We studied an identical parallel machine scheduling problem with non-anticipatory
family setup times, derived from a ship scheduling problem in the offshore oil & gas logistics.
Tests of the 19 heuristics presented on all instances show that the heuristic WCMT-WAVGA
performs better, with an average deviation of 1.017 from the best solutions. For future
work, local searches and meta-heuristics will be developed.

References

Ðurasević, M; Jakobović, D. “A survey of dispatching rules for the dynamic unrelated machines
environment”, Expert Systems with Applications, Vol. 113, pp. 555-569, 2018.

Weng, M.; Lu, J.; Ren, H. “Unrelated parallel machine scheduling with setup consideration and
a total weighted completion time objective”, International journal of production economics,
Vol. 70, pp. 215-226, 2001.

