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1 Introduction

Typically each activity in a project uses resources during its execution. In many cases
those resources have to be rented, for example heavy machinery on construction sites. The
renting of resources induces two types of costs namely time-independent procurement costs
and time-dependent renting costs. In this paper we present two MILP formulations for the
resource renting problem with general temporal constraints (RRP/max). The RRP/max
was introduced by Nübel (2001) and extends the well-known resource availability problem
by taking time-dependent renting costs into account. The problem aims at minimizing
the total resource costs to execute a project while taking general temporal constraints
into account. In Section 2 the RRP/max is described formally. Section 3 presents two
different time-indexed MILP formulations. Finally, in Section 4 the results of a preliminary
computational study are presented where we compare the performance of our two models.

2 Problem description

With given renting and procurement costs for each resource type the resource renting
problem (RRP/max) can be modeled as an activity-on-node network, where the nodes
represent activities V = {0, . . . , n + 1} with n real activities and the fictitious project start
0 and project end n + 1. Each activity i ∈ V is assigned a duration pi ∈ Z≥0 and has
to be performed without preemption. The arcs of the network given by set E ⊆ V × V
represent temporal constraints between activities. Arc weights δij ≥ 0 indicate a minimal
time lag for arc 〈i, j〉 ∈ E while δij < 0 gives a maximal time lag between the start times
of activities i and j. Here a project has a given deadline d̄ introduced by 〈n + 1, 0〉 with
δn+1,0 = −d̄. A sequence of start times Si for all activities i ∈ V is called a schedule
S = (S0, S1, . . . , Sn+1), which is termed time-feasible if Sj − Si ≥ δij for all 〈i, j〉 ∈ E.
Each activity i in a project has an earliest start time ESi and a latest start time LSi, so
that the possible start times can be limited to the set Wi = {ESi, ESi+1, ..., LSi}. For the
execution of activity i an amount rik ∈ Z≥0 of resource k ∈ R is needed. The RRP/max
considers renewable resources which have to be rented. The usage of one unit of resource k
for t periods incurs procurement costs cp

k and time-dependent renting costs of t·cr
k. To carry

out a project according to a given time-feasible schedule S, the number of available (rented)
resources has to be equal to or exceed the resource demand for all k ∈ R and t ∈ T . Thus,
a renting policy ϕk(S, t) is needed, which specifies when resources are procured or released,
so that ϕk(S, t) ≥

∑

i∈V |Si≤t<Si+pi
rik for all k ∈ R and t ∈ T . For the case cp

k < cr
k an

optimal renting policy is to procure additional resources when the resource demand has a
positive step discontinuity at t and to release idle resources immediately, since procuring
new resources is less expensive than keeping unused resources. In general cp

k > cr
k holds,

here procurement costs of a resource k are higher than renting costs for one period. In this
case, we can define span = ⌊cp

k/cr
k⌋ as the maximum number of time periods for which it



is beneficial to hold unused resources if they are used later in the project. The objective
of the RRP/max is to find a schedule which minimizes the total costs incurred by renting
resources. The problem can be stated as follows.

Min F (S) =
∑

k∈R

[

cr
k

∫ d̄

0

ϕk(S, t)dt + cp
k

∑

t∈Jk

∆+ϕk(S, t)

]

s.t. Sj − Si ≥ δij (〈i, j〉 ∈ E)

ϕk(S, t) ≥
∑

i∈V |Si≤t<Si+pi

rik (t ∈ T, k ∈ R)

S0 = 0

Si ∈ Z≥0 (i ∈ V )

3 Mixed-integer linear programs

Both MILP formulations presented in this paper are based on well-known time-indexed
formulations for the RCPSP. The first formulation based on the formulation by Pritsker et

al. (1969) uses binary variables xit for all i ∈ V and t ∈ T where xit = 1 if activity i starts
at point in time t. To model the resource demand, we use the variable zkt representing the
amount of resource k ∈ R needed at t ∈ T . The renting policy ϕk(S, t) is modeled using
positive variables akt and wkt, which represent the number of units of resource k added or
withdrawn at t. With these variables the model (RRP-SP) can be formulated.

Min
∑

k∈R
cp

k

∑

t∈T
akt +

∑

k∈R
cr

k

∑

t∈T
t · (wkt − akt) (1.1)

s.t.
∑

t∈Wi

xit = 1 (i ∈ V ) (1.2)
∑

t∈Wj

t · xjt −
∑

t∈Wi

t · xit ≥ δij (〈i, j〉 ∈ E) (1.3)

∑

i∈V
rik

∑min{t,LSi}

τ=max{ESi,t−pi+1}
xiτ ≤ zkt (k ∈ R, t ∈ T ) (1.4)

∑t

τ=0
(akτ − wkτ ) ≥ zkt (k ∈ R, t ∈ T ) (1.5)

∑

t∈T
akt −

∑

t∈T
wkt = 0 (k ∈ R) (1.6)

akt, wkt, zkt ∈ Z≥0 (k ∈ R, t ∈ T ) (1.7)

xit ∈ {0, 1} (i ∈ V, t ∈ Wi) (1.8)

Constraints (1.2) state that every activity has to be started exactly once. With Si =
∑

t∈Wi
t · xit (1.3) ensure all temporal restrictions between activities are satisfied. Lower

bounds on the minimal value for every k and t are assigned to variables zkt by constraints
(1.4). The available (rented) resources at time t are given by

∑t
τ=0

(akτ − wkτ ), hence in-
equalities (1.5) ensure that a feasible renting policy ϕk(S, t) ≥ zkt for all k ∈ R and t ∈ T
is obtained. Also all added resources have to be withdrawn by the end of the project, see
(1.6). Alternative constraints to ensure temporal relations, are the disaggregated prece-
dence constraints proposed by Christofides et al. (1987). Here we use the formulation,

∑LSi

τ=t
xiτ +

∑min {LSj ,t+δij−1}

τ=ESj

xjτ ≤ 1 (〈i, j〉 ∈ E, t ∈ T ) (1.9),

by Rieck et al. (2012) to take minimal and maximal time lags into consideration. The
second MILP formulation is based on binary on/off variables where µit = 1 if activity i is
in progress at t and otherwise µit = 0. Here we adapt the model from Artigues (2013) to
the RRP/max. By defining Kit = ⌊t/pi⌋ for all i ∈ V |pi > 0 and otherwise Kit = 0, as the
number of potential time windows of length pi in which an activity could be executed, our
second MILP model (RRP-OO) for the RRP/max can be stated as follows.



Min
∑

k∈R
cp

k

∑

t∈T
akt +

∑

k∈R
cr

k

∑

t∈T
t · (wkt − akt) (2.1)

s.t.
∑Kit

λ=0
µi,t−λ·pi

−
∑Ki,t−1

λ=0
µi,t−λ·pj−1 ≥ 0 (i ∈ V |pi > 0, t ∈ T \ {0}) (2.2)

∑Ki,LCi−φi

λ=0
µi,LCi−φi−λ·pi

= 1 (i ∈ V ) (2.3)
∑Ki,t−δij

λ=0
µi,t−λ·pi−δij

−
∑Kjt

λ=0
µj,t−λ·pj

≥ 0 (〈i, j〉 ∈ E|δij ≥ 0, t ∈ T ) (2.4)

∑Kδ
ijt

λ=0
µi,d̄−λ·pi−∆ijt

≤ 1 − µjt (〈i, j〉 ∈ E|δij < 0, t ∈ T ) (2.5)
∑

i∈V
rik · µit ≤ zkt (k ∈ R, t ∈ T ) (2.6)

∑t

τ=0
(akτ − wkτ ) ≥ zkt (k ∈ R, t ∈ T ) (2.7)

∑

t∈T
akt −

∑

t∈T
wkt = 0 (k ∈ R) (2.8)

µ00 = 1 (2.9)

µit = 0 (i ∈ V, t ∈ T \ W ′
i ) (2.10)

akt, wkt, zkt ∈ Z≥0 (k ∈ R, t ∈ T ) (2.11)

µit ∈ {0, 1} (i ∈ V, t ∈ Wi) (2.12)

Constraints (2.2) state that each activity has to be performed during pi consecutive
periods. For all potential time windows between the project start and the latest completion
LCi of activity i, an activity can only be in progress during one of them (2.3). Here φi = 1
if pi ≥ 1 else φi = 0. Constraints (2.4), are modifications of the disaggregated precedence
constraints used by Artigues (2013) and model all time lags where 〈i, j〉 ∈ E|δij ≥ 0, by
ensuring an activity j can only be processed if activity i has been in progress at least δij

periods before. To model time lags, where δij < 0, we define Kδ
ijt = ⌊(d̄ − t + pi + δij)/pi⌋

for all i ∈ V |pi > 0 and Kδ
ijt = 0 otherwise. Moreover ∆ijt = mod([d̄ − t + δij ]/pi) for all

i ∈ V |pi > 0 and ∆ijt = 0 otherwise, is defined. Inequalities (2.5) ensure that for every time
lag 〈i, j〉 ∈ E|δij < 0, if activity i is executed during the time interval [t + pi + |δij |, ..., d̄]
activity j can not be in progress at t, since this would result in Sj −Si < δij and, therefore,
in an infeasible schedule. The calculation of the resource demand is straightforward for
this formulation, see (2.6). Constraints (2.7) and (2.8) ensure a feasible renting policy is
used. (2.9) state that the project starts at t = 0 and (2.10) set all infeasible µit to 0 where
W ′

i = {ESi, ESi+1..., LCi − 1}.

4 Lower Bounds for variables

To reduce the number of potential solutions and, therefore, limit the search space, when
solving the RRP/max, additional restrictions are devised. We establish a lower bound for
the minimal necessary number of resources to procure for the whole project, by defining
∑

t∈T akt ≥ LBa
k for all k ∈ R (3.1) where LBa

k = max(LBa
1,k, LBa

2,k, LBa
3,k). LBa

1,k =
maxi∈V (rik) gives the maximum resource demand of k for any activity i. For LBa

2,k =
⌈
∑

i∈V rik · pi/d̄
⌉

the total workload for every resource k is distributed equally over the time
horizon of the project. The third lower bound is given by LBa

3,k = maxt∈T (
∑

i∈V nc
t

rik).

Here we use the resource demand of near-critical activities V nc
t = {i ∈ V |LSi ≤ t <

ESi + pi} to determine the minimal number of resources needed for the project at a given
point of time. For a second type of restriction, the near-critical resource demand is used to
define a bound zkt ≥

∑

i∈V nc
t

rik for all (t ∈ T ) (3.2), where the minimal number of units

needed of resource k for every t is determined. By substituting constraints (1.3) with (1.9)



and adding the restrictions (3.1) and (3.2), models (RRP-SPC-LB) and (RRP-OO-LB) are
obtained.

5 Performance analysis

To compare the performance of the devised formulations a computational study was
conducted. The four models were implemented in GAMS v.25.1 and solved, by using IBM

CPLEX v.12.8.0, on a computer with an Intel Core i7-7700 with 4.2 GHz and 64 GB RAM
under Windows 10. As problem instances we used adaptations of the well-known benchmark
test set UBO (Schwindt 1998) where we introduced a project deadline d̄ = α · ESn+1 with
α = {1, 1.25, 1.5} and procurement costs cr

k = CQ · cp
k with CQ = {0.5, 0.25, 0.1}. For

every combination of parameters α and CQ, 30 instances with n = {10, 20} and an order
strength of 0.5 were used. For the computational study a run time limit of 600 seconds
was employed. The results of our study are given in Tab. 1, where for all four models
the average gap [%] (relative deviation from the best lower bound), the average solution
time [s] and the number of instances solved to optimality (max. 30) are given. Instances
with a larger time horizon have more possibilities to schedule activities and therefore are
harder to solve. For most parameter combinations the presented additional restrictions
lead to smaller gaps and lower solution times for both formulations. Especially the larger
instances with n = 20 show improvements. Preliminary tests for instances with greater
numbers of activities n = {50, 100}, showed a decreasing performance of the OO-models
compared to the SP-models.
In conclusion, when comparing the two models with additional constraints (RRP-SPC-
LB) and (RRP-OO-LB) for all instances with n = 20, we found the solver is able to obtain
better solutions in a shorter amount of time with the OO-formulation. In future research,
the two formulations presented in this paper could be compared to other possible MILP
formulations for the (RRP/max).

Table 1. Results of the computational study

RRP-SP RRP-SPC-LB RRP-OO RRP-OO-LB

n α CQ gap time #opt gap time #opt gap time #opt gap time #opt

10 1 0,25 0,0 1,0 30 0,0 1,0 30 0,0 0,4 30 0,0 0,4 30
10 1,25 0,25 0,29 74,0 28 0,19 55,9 29 0,0 12,7 30 0,0 12,9 30
10 1,5 0,25 1,69 138,4 25 1,55 144,5 25 0,22 61,4 29 0,22 59,9 29
20 1 0,25 0,0 25,4 30 0,0 25,0 30 0,0 5,9 30 0,0 6,0 30
20 1,25 0,25 8,82 562,6 3 6,9 527,2 5 3,56 465,0 10 2,81 451,0 12
20 1,5 0,25 17,81 600,0 0 15,14 600,0 0 12,11 592,3 1 11,62 591,9 1
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