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1 Introduction

Project scheduling is a rich and widely studied research area, most of the literature fo-
cuses on deterministic problems such as the resource-constrained project scheduling problem

(RCPSP) and the resource-constrained multi-project scheduling problem (RCMPSP). The
goals of RCPSP and RCMPSP typically minimise the total or average project completion
times, which can be overly simplistic as it ignores the fact that projects may have di�erent
importance or rewards and may have deadlines with associated tardiness penalties. Solu-
tions for such problems are deterministic schedules that show planned starting times of
tasks.

The project execution frequently gets a�ected by many uncertainties; and project com-
pletion times deviate from the planned schedule. One uncertain element of project schedul-
ing is task durations. Another uncertain element is stochastic resource availability. Resource
availability could be a�ected by maintenance, breakdowns, personnel days o�. In the liter-
ature, the stochastic equivalents of RCPSP and RMCPSP are called the stochastic RCPSP
and the stochastic RCMPSP respectively. Most of the research in this �eld concerns only
stochastic task durations e.g. Bruni, Pugliese, Beraldi & Guerriero. (2018). Only a few
researched stochastic resource availability e.g. Wang, Chen, Mao, Chen & Li (2015).

Companies usually work on multiple projects at the same time to use their resources
more e�ectively. On the arrival of a new project it should be added to execution as soon as
possible without waiting for the completion of the previous schedule. Thus the arrival of a
new project disrupts the previous schedules. The RCMPSP with random project arrivals
is called dynamic RCMPSP (DRCMPSP). In the literature, the DRCMPSP considers the
random arrival of new projects assuming all other project elements are deterministic.

Only a limited number of research considered the both dynamic project arrivals and
stochastic task durations together e.g. Satic, Jacko & Kirkbride (2020). This problem is
called the dynamic and stochastic RCMPSP. The dynamic and stochastic RCMPSP aims to
�nd optimal schedules or scheduling policies that maximise the expected total discounted
or time-average project reward minus the costs. In this paper we will focus on the former.
We consider the dynamic and stochastic RCMPSP with project arrivals and stochastic
task durations. We model the problem as an in�nite-horizon discrete-time Markov decision

process (MDP).

2 Modelling Framework

In this study, we assume the dynamic and stochastic RCMPSP contains J project types
where the project type, j, determines the characteristics such as a new project arrival
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Table 1. Example decision state for a problem with two project types, each with three
tasks.

Tasks Remaining due date
Project type 1 : x1,1 x1,2 x1,3 d1
Project type 2 : x2,1 x2,2 x2,3 d2

probability (λj), number of tasks (Ij), project network, resource requirement per unit time
of a task i (bj,i), task completion probabilities (γj,i), minimal possible completion time
(tmin

j,i ), maximal possible completion time (tmax
j,i ), project due date (Fj), reward (rj) and

tardiness cost (wj). We model this problem as an in�nite horizon Discrete Time Markov

Decision Process (DT-MDP) which is de�ned by �ve elements: time horizon, decision state
space, action set, transition function and pro�t function.

In a DT-MDP, the decision maker takes an action a for a decision state s at a decision
epoch that occur at �xed intervals. The period between two consecutive decision epochs is
a single unit of time, called a period.

The system information at a decision epoch is called a decision state (s). An example
decision state for a two project-type problem is given in Table 1, where xj,i is the remaining
task processing time to the latest possible task completion time (tj , i

max) and dj is the
remaining time until the due date. For tasks awaiting processing we set xj,i to −1.

The action a represents the processing decision of pending tasks (xj,i = −1) of the
decision state (s). An action must satisfy two conditions: there must be enough resources

(B) available to begin processing these new tasks (
∑J

j=1

∑Ij
i=1 bj,i(I

{
aj,i = 1

}
+ I

{
xj,i >

0
}
) ≤ B) and all predecessor tasks (Mj,i) of task imust be completed (

∑
m∈Mj,i

xj,m = 0).
After the selected action a is applied in the decision state s, the system transforms

from one state to another (s′) at the next decision epoch according to a transition function
P (s′|s, a).

P (s′|s, a) =
J∏

j=1

Ij∏
i=1

P (x′j,i|xj,i + aj,i) (1)

P (x′j,i|xj,i + aj,i) =



λjγj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = −1, i = Ij

(1− λj)γj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = 0, i = Ij

γj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = 0, i < I

1− γj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = xj,i + aj,i − 1

λj , for xj,i + aj,i = 0, x′j,i = −1, i = Ij

1− λj , for xj,i + aj,i = 0, x′j,i = 0, i = Ij

1, for xj,i + aj,i = 0, x′j,i = 0, i < Ij

1, for xj,i + aj,i > 1 + tmax
j,i − tmin

j,i ,

x′j,i = xj,i + aj,i − 1

1, for xj,i + aj,i = −1, x′j,i = −1

(2)
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The pro�t function (Rs,a) is the sum of rewards (rj) of completed projects in the current
period minus the tardiness cost of any late completions.

Rs,a =

J∑
j=1

rjE
[
I
{(
xj,I ≥ 1 ∨ (xj,I = −1 ∧ aj,I = 1)

)
∧ x′j,I ≤ 0

}]

−
J∑

j=1

wjE
[
I
{(
xj,I ≥ 1 ∨ (xj,I = −1 ∧ aj,I = 1)

)
∧ x′j,I ≤ 0 ∧ dj = 0

}]
.

(3)

3 Solution Methods

We compare six di�erent solution approaches which are: a dynamic programming algo-
rithm (DP), an approximate dynamic programming algorithm (ADP), an optimal reactive
baseline algorithm (ORBA), a genetic algorithm (GA), a rule-based algorithm (RBA) and
a worst decision algorithm (WDP).

The dynamic programming value iteration algorithm is used to determine an optimal
policy that maximises the discounted long-time pro�t. We tested computational limitations
of DP in the dynamic and stochastic RCMPSP.

ADP replaces the true value function of the Bellman's equation with an approximate
one to overcome the curse of dimensionality problem of DP. We built a linear approximate
value function with two state information as decision variables and weighted them using
coe�cients. The decision variables are the number of the period spent on processing each
type of projects and the number of allocated resources between project types.

We used three reactive scheduling heuristics which are ORBA, GA and RBA. GA and
RBA methods are popular for both dynamic and static RCMPSP problems thus we added
them our comparison to evaluate their performance. Reactive scheduling methods do not
consider the future uncertainties while generates schedules; then they �x these schedules
at each distribution (Rostami, Creemers & Leus 2018).

Reactive scheduling methods generate a new baseline schedule and convert it to an
action for each state. ORBA and GA seek to maximise the pro�t and uses the total com-
pletion time as tiebreakers between the schedules with equal reward. If several schedules
have equal rewards and equal completion times, the models prioritise smallest numbered
project type. We used a population of 100 with 100 generations in GA. RBA uses the
longest processing time �rst rule to schedule. If several tasks have equal duration, RBA
selects one at random.

WDP, using a dynamic programming value iteration algorithm, seeks a non-idling policy
to minimise the average pro�t per unit time. We used this method in our comparison to
show the pro�t of the worst non-idling policy.

4 Algorithm evaluation

All tests are performed on a desktop computer with Intel i5-6500T CPU with 2.50 GHz
clock speed and 32 GB of RAM. JuliaPro 1.3.1.2 is used for coding the model, solution
approaches and problems. Three dynamic and stochastic RCMPSPs are generated and
tested consecutively from 1% to 90% project arrival probabilities, incremented by 10%.

Table 2 shows the discounted long-term pro�ts of six algorithms with 95% discount
rate. The policies of reactive scheduling algorithms are closer to optimum with low project
arrival rates such as 1% where system is closer to static and they diverge from the optimum
as arrival probability increases. ADP su�ers at low arrival probabilities but produces equal
or better results to ORBA after %30 arrival probability.
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Table 2. Discounted long-term pro�ts

Two projects and two tasks problem

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DP 6.16 16.23 22.55 26.32 28.76 30.46 31.70 32.64 33.38 33.96
ADP 3.42 13.45 18.02 22.04 26.57 27.91 28.86 29.54 30.05 30.44
ORBA 5.99 15.64 21.31 24.54 26.55 27.89 28.83 29.51 30.02 30.41
GA 5.74 14.70 18.54 20.73 19.64 24.97 20.60 22.74 21.62 20.85
RBA 5.49 13.45 16.36 16.99 16.84 16.44 16.00 15.59 15.26 15.04
WDA 5.38 12.96 15.37 15.73 15.50 15.16 14.78 14.26 13.68 12.96

Two projects and three tasks problem

DP 10.17 18.79 23.08 25.43 26.91 27.92 28.65 29.20 29.63 29.98
ADP 6.85 18.51 22.70 25.12 26.53 27.47 28.14 28.64 29.03 28.89
ORBA 10.15 18.68 22.86 25.12 26.53 27.47 28.14 28.64 29.03 29.34
GA 10.15 18.68 22.86 25.12 26.53 27.47 28.14 28.64 29.03 29.34
RBA 10.11 18.42 22.37 24.44 25.69 26.50 27.05 27.45 27.75 27.99
WDA 9.79 17.13 20.07 21.44 22.20 22.66 22.95 23.15 23.29 23.40

Three projects and two tasks problem

DP 15.14 28.36 32.63 34.92 36.98 38.74 40.19 41.37 42.33 43.12
ADP 10.50 25.48 29.15 31.83 34.23 36.28 37.99 39.39 41.23 42.03
ORBA 14.88 27.48 30.73 31.75 32.31 32.73 33.10 33.43 33.74 34.03
GA 14.63 26.79 29.37 29.84 29.88 29.97 30.65 30.60 31.29 31.62
RBA 14.61 25.96 28.64 29.96 31.21 32.48 33.73 34.93 36.06 37.11
WDA 13.82 22.59 23.31 23.26 23.14 23.05 23.04 23.10 23.23 23.40

5 Conclusion

We consider the RCMPSP with uncertain project arrivals and stochastic task durations
as an in�nite-horizon DT-MDP. We used six approaches and compared their results. We
also tested the computational limits of the DP on the dynamic and stochastic RCMPSPs.
We observed that DP su�ers from the curse of dimensionality even for the small size
problems and results of reactive scheduling methods deteriorate compared to optimum
results as stochasticity increases. ADP performs similar or better than ORBA, which is
the second best method, after 30% arrival probability. More detailed description of the
model and more extensive results can be found at Satic et al. (2020).
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