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1 Introduction

When dealing with project scheduling problems, often a fixed deadline for the project
completion time is imposed. The main concern of the project manager is to plan the use
of resources in such a way, that the project finishes on time and the project costs are
minimised. In this work, we will investigate how we can solve a problem of this kind -
the multi-mode resource investment problem (MRIP) - using mixed-integer programming
(MIP) and constraint programming (CP) techniques. Since the efficiency of constraint
programming solvers increased significantly in recent years, we want to study if they are a
suitable procedure when solving this problem type.

2 Multi-mode Resource Investment Problem

The MRIP is a project scheduling problem and an extension of the resource investment
problem (RIP). The RIP, also known as resource availability cost problem (RACP), was
introduced by Möhring (1984) and has many practical application cases (e.g. software
development or construction projects). For the multi-mode variant, Hsu and Kim (2005)
presented a priority rule heuristic and Qi et al. (2015) applied a modified version of the
particle swarm optimisation metaheuristic to the MRIP. Kreter et al. (2018) tested MIP
as well as CP formulations of the RIP (and some of its extensions) and showed that CP
techniques work especially well. They solved many of the open instances to optimality.

Next, we give a formal definition of the MRIP. An instance of the MRIP consists of a
set of activities A = {0, . . . , n+1} with precedence relations E ⊂ A×A among them. The
activities are nonpreemptable and for each activity i, there is a set of modes Mi. Depending
on the chosen mode m ∈ Mi, the activity processing duration dim can vary. There are
two types of resources that are required by the activities in the MRIP: the renewable
resources in R replenish after each period and are useful to model workers or machines.
Non-renewables resourcesRn are consumed by activity execution and do not replenish. The
amount of required resource units of activity i depends on the mode m and the resource
k ∈ R (k ∈ Rn) and is denoted by rimk (rnimk). For the renewable resources, the peak
resource consumption in all periods needs to be lower than or equal to the resource capacity
ak allocated to the project. The renewable resource costs are computed by multiplying
the capacity with the resource unit cost factor ck. Similar, the non-renewable costs are
also the product of the resource unit cost factor cnk and the total non-renewable resource
consumption ank . In the MRIP, there is a also a deadline D given that restricts the project
completion. Using forward and backward calculation (Kelley 1963), we can compute bounds
on the earliest start (ESTi) and latest finish (LFTi) times of the activities. The goal is
to find a precedence feasible schedule and a mode assignment that minimises the resource
costs.



2

We present a mathematical model for the MRIP using so-called pulse variables ximt. It is
an adaption of a model for the resource constrained project scheduling problem (Artigues
2017). In preliminary experiments, the model based on pulse variables achieved better
results than the models with on-off or step variables. For each activity i ∈ A, mode
m ∈Mi and period t ∈ [ESTi, LFTi−dim] we introduce the binary decision variable ximt

that is equal to 1 if and only if activity i is processed in mode m and starts in period t.
Let us now show a model that can be used as a mixed-integer program to solve the

MRIP.

min
∑
k∈R

ck · ak +
∑

k∈Rn

cnk · ank (1)

s.t.
∑

m∈Mi

LFi−dim∑
t=ESi

ximt = 1 ∀i ∈ A (2)

∑
m∈Mi

LFi−dim∑
t=ESi

ximt(t+ dim) ≤
∑

m∈Mj

LFj−djm∑
t=ESj

xjmt · t ∀(i, j) ∈ E (3)

∑
i∈A

∑
m∈Mi

LFi−dim∑
t=ESi

ximt · rnimk ≤ ank ∀k ∈ Rn (4)

∑
i∈A

∑
m∈Mi

min(t,LFi−dim)∑
q=max(ESi,t−dim+1)

ximq · rimk ≤ ak ∀k ∈ R, t = 0, . . . , D (5)

ak ≥ 0, ank ≥ 0 ∀k ∈ Rn (6)
ximt ∈ {0, 1} ∀i ∈ A,∀m ∈Mi, t = ESi, . . . , LSi (7)

In the objective function (1), we minimise the sum of the resource costs. The renewable
part is the product of the peak resource usage ak and the given resource cost factor ck.
Similarly, we multiply the amount of consumed non-renewable resource units ank with its
resource cost factor cnk to get the non-renewable resource costs. The constraints (2) ensure
that each activity is executed in exactly one mode and exactly one start time is chosen.
We model the precedence constraints in a aggregated way and they are displayed in (3): if
(i, j) ∈ E, then the finish period of activity i (left side of the inequality) has to be lower
than or equal to the start period of activity j (right side). In constraint (4), we compute
the non-renewable resource consumption for each non-renewable resource and (5) shows
the renewable resource consumption in each time period t ∈ [0, D]. Lastly, (6) - (7) depict
the decision variables.

3 Constraint Programming Model

Next, we present a constraint programming model. We use the software IBM ILOG
CPLEX CP Optimizer (cf. Laborie et al. (2018)) to model and solve the MRIP using
CP-based techniques. The modelling language of CPLEX CP Optimizer offers the use of
so-called interval variables. They can be used to model the start and finish time of an
activity and with the keyword size, it is possible to specify the length of the interval
(i.e., the difference between the finish and start time). With optional, we can declare
that an activity can be left unperformed (useful in the context of different modes) and
presenceOf shows, if an interval variable is performed or not. Let us introduce the decision
variables used in our model: With act[i] we define a interval variable for each activity i ∈ A
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(see (14)). Since activities can be performed in multiple modes, we introduce in (15) an
optional interval variable mode[i,m] for each mode with a specific duration dim. Among
interval variables, we can use time expressions such as endBeforeStart to model the
precedence restrictions as seen in (10). With the alternative expression, we can link the
act and mode interval variables. The constraint alternative(b, {b1, . . . , bn}) ensures that
if interval variable b is present, then exactly one of the interval variables in {b1, . . . , bn} is
also present and their start and end times coincide. This expression is used in (9) to ensure
that we choose exactly one processing mode for each activity. To model the peak resource
consumption, we use real valued decision variables ak and ank (see (13)). We make use of
a cumulative function named renewUsagek in (12) to represent the renewable resources.
There, we sum up over the resource consumptions of the present interval variables with
the so called pulse(a, h) expression (that adds the amount h between the start and end
time of interval variable a). The non-renewable resources are modelled by summing up the
respective resource consumptions of all present mode interval variables in (11). Finally, in
the objective function (8), we sum up the resource costs for the peak resource usage of the
renewable and non-renewable resources.

min
∑
k∈R

ck · ak +
∑

k∈Rn

cnk · ank (8)

s.t. alternative(act[i], {mode[i,m] : m ∈Mi}) ∀i ∈ A (9)
endBeforeStart(act[i], act[j]) ∀(i, j) ∈ E (10)∑
i∈A

∑
m∈Mi

presenceOf(mode[i,m]) · rimk ≤ ank ∀k ∈ Rn (11)

renewUsagek =
∑
i∈A

∑
m∈Mi

pulse(mode[i,m], rimk) ≤ ak ∀k ∈ R (12)

ak ≥ 0 ∀k ∈ R ank ≥ 0 ∀k ∈ Rn (13)
interval act[i] ∀i ∈ A (14)
interval mode[i,m] optional size dim ∀i ∈ A,∀m ∈Mi (15)

The CPLEX CP Optimizer software features an automatic search that is complete
and tunes its parameters automatically. It uses propagation of the temporal network, fil-
tering algorithms for the cumulative resource constraints and large neighborhood search
techniques to solve complex scheduling problems (Laborie et al. 2018).

4 Computational Experiments

In order to test the performance of the two approaches presented above, we used the
benchmark instances of the RIPLib dataset1. It features MRIP instances with 30, 50 and
100 activities, 3 or 6 modes per activity and up to 8 renewable resources. In total, 4 950
instances were used in our experiments. We used version 12.9.0 of the CPLEX CP Optimizer
solver to solve the CP model depicted above and Gurobi 9.0.0 to solve the MIP model
presented before. The solvers were executed on an Intel Xeon Silver 4214 CPU running
at 2.20 GHz and the thread count for each solver was restricted to 1. As a stopping
criterion, we used time limits of 60, 600 and 3 600 seconds. In Table 1 we depict the
portion of instances that were solved to optimality by the MIP or CP solver. Surprisingly,
the CP method solved almost twice as many instances in 60 seconds than the MIP solver
in 3 600 seconds. With the 1 hour time limit, CP solved almost one third of the instances
1 https://riplib.hsu-hh.de/
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Table 1. Percentage of instances solved to optimalitiy

Max runtime in seconds
Method 60 600 3 600

MIP 0.9 % 4.3 % 9.3 %
CP 14.6 % 22.6 % 28.4 %

to optimality. It shows clearly, that CP outperforms the MIP approach on these instances.
Further results will be presented at the conference due to space limitations and can also
be found in (Gerhards 2020).
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