
1

A New Lower Bound Approach for the Multi-mode

Resource Constrained Project Scheduling Problem

Christian Stürck1

Helmut Schmidt University Hamburg, Germany
christian.stuerck@hsu-hh.de

Keywords: MRCPSP, project scheduling, lower bounds.

1 Introduction and problem description

The multi-mode resource constrained project scheduling problem (MRCPSP) is an
extension of the resource-constrained project scheduling problem (RCPSP). Besides the
decision of starting time, a mode has to be chosen for each activity.

The objective of the MRCPSP is to �nd the minimum feasible makespan of the project.
The project consists of a set of activities A = {0, ..., n+1}. Each activity i can be executed
in di�erent modes. Therefore, for each activity i a set of modes Mi is given. Mode m has
a duration di,m ∈ Z+ as well as a resource consumption ri,m,k ∈ Z+ for each resource
k ∈ R∪Rn. The duration and the resource consumption of an activity varies with respect
to the chosen mode. On the one hand, a set of renewable resources R is given which are
available per time unit. On the other hand, a set of non-renewable resources Rn exists
which are available through out the whole project. Activities have precedence constraints
between each other. Set E = {(i, j) : i, j ∈ A} indicates the precedence relations. Every
activity has to be set to a mode and a starting time, while respecting all precedence and
resource constraints. A mathematical model for the MRCPSP was �rst described by Talbot
(1982):

min

LSn+1∑
ESn+1

xn+1,1,t · t (1)

s.t.
∑

m∈Mi

LSi∑
t=ESi

xi,m,t = 1 ∀i ∈ A

(2)∑
m∈Mi

LSi∑
t=ESi

xi,m,t · (t+ di,m) ≤
∑

m∈Mj

LSj∑
t=ESj

xj,m,t · t ∀(i, j) ∈ E

(3)∑
i∈A

∑
m∈Mi

LSi∑
t=ESi

xi,m,t · ri,m,k ≤ Rk ∀k ∈ Rn

(4)∑
i∈A

∑
m∈Mi

min(t,LSi)∑
q=max(ESi,t−di,m+1)

xi,m,q · ri,m,k ≤ Rk ∀k ∈ R,∀t ∈ T

(5)

xi,m,t ∈ {0, 1} ∀i ∈ A,∀m ∈Mi, t = ESi, . . . , LSi

(6)
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The binary decision variables xi,m,t are set to one if and only if the activity i is executed
in mode m and if it starts at time period t. We consider the non-preemptive case of the
MRCPSP, which means that an activity cannot be interrupted or change its mode, once it
is started. Note that in the model above the index t denotes the starting period and not
the completion period as introduced by Talbot.

The objective function (1) minimizes the starting time of the dummy activity n+1. As
this denotes the end of the project, the makespan of the project is minimized. Term (2)
ensures that each activity is assigned to exactly one mode and to one starting time. Con-
straints (3) guarantee the precedence relations, i.e., an activity i must be �nished before
activity j can start if (i, j) ∈ E. Inequalities (4) and (5) restrict the resource consumptions
for the non-renewable and renewable resources, respectively. The binary decision variables
are de�ned in (6).

The MRCPSP is a NP-hard problem, even �nding a feasible mode assignment is NP-
complete if the instance has more than one non-renewable resource (Kolisch and Drexl
(1997)). Lower bounds can be used either to evaluate the quality of a solution or as bounds
in an exact approach to reduce the solution space. Therefore this work presents new lower
bound approaches for the MRCPSP.

2 A new lower bound approach

Several lower bound procedures for the MRCPSP already exist in the literature. The
most common one is the Critical Path Lower Bound (CP-LB) which only considers the
precedence constraints and relaxes all resource constraints (Kelley (1963)). Since every
activity has more than one mode the mode with the shortest duration is always chosen for
the CP-LB.

More complex lower bounds were presented as well. Maniezzo and Mingozzi (1999)
presents several LP relaxations. Pesch (1999) uses an adaptation of the Talbot (1982)
algorithm for generating lower bounds. The approaches of Zhu et al. (1997) and Stürck
and Gerhards (2018) are based on calculating new earliest starting times for the activities
which lead to new lower bounds. But there are a lot more lower bound procedures for the
RCPSP. For an example the work of Klein and Scholl (1999) alone presents 17 di�erent
approaches for lower bounds for the RCPSP.

This work will present a new lower bound approach for the MRCPS. It is based on
the Capacity Bound for the RCPSP in Klein and Scholl (1999). Klein and Scholl (1999)
described the Capacity Bound as follows: for each activity the duration is multiplied with
the renewable resource consumption of the activity. These products are summed up and
divided by the available resource per time period:

Capacity Bound = max{d
∑
i∈A

rri,k · di/Rke : k ∈ Rr} . (7)

This operation is done for every renewable resource. The maximal rounded up quotient
determines the lower bound for the RCPSP.

To use this approach for the MRCPSP it has to be adapted. We combine the Capacity
Bound with a feasible mode assignment. Therefore we call this bound the Feasible Mode

Capacity Bound. The used feasible mode assignment is inspired by the MIP approach of
To�olo et al. (2016). The problem of the mode selection is rede�ned to a multidimensional
knapsack problem:
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min
∑
i∈A

∑
m∈Mi

yi,m · di,m (8)

s.t.
∑

m∈Mi

yi,m = 1 ∀i ∈ A (9)

∑
i∈A

∑
m∈Mi

yi,m · rni,m,k ≤ Rn
k ∀k ∈ Rn (10)

yi,m ∈ {0, 1} ∀i ∈ A,∀m ∈Mi (11)

The binary decision variables yi,m are set to one if and only if the activity i is executed
in mode m. The constraint (9) assigns exactly one mode to each activity. Term (10) en-
sures that the non-renewable resources are not exceeded. The objective function (8) is just
subsidiary for �nding a feasible mode assignment.

These two approaches can be combined a new lower bound procedure: the Feasible

Mode Capacity Bound :

minBl =
∑
i∈A

∑
m∈Mi

yi,m · di,m · rri,m,k (12)

s.t.
∑

m∈Mi

yi,m = 1 ∀i ∈ A (13)

∑
i∈A

∑
m∈Mi

yi,m · rni,m,k ≤ Rn
k ∀k ∈ Rn (14)

yi,m ∈ {0, 1} ∀i ∈ A,∀m ∈Mi (15)

The aim is to �nd a feasible mode assignment with the minimal renewable resource
usage Bl for each renewable resource l ∈ Rr. The binary decision variables (15) are set
to one if and only if the activity i is executed in mode m. The objective function (12) is
similar to Term (7) with the addition of yi,m which ensures that only the chosen modes
are considered. With (13) each activity is assigned to exactly one mode. Constraint (14)
considers all non-renewable resources k ∈ Rn.

This mathematical model ((12) � (15)) is solved for each renewable resource l ∈ Rr. In
the next step the Feasible Mode Capacity Bound can be solved:

Feasible Mode Capacity Bound = max{dBl/Rle : l ∈ Rr} . (16)

Each quotient is rounded up since only integer periods are considered. The maximal
quotient determines the Feasible Mode Capacity Bound. The next section will display the
computational experiments.

3 Computational experiments

The experiments were done on the MMLIB instances presented by Van Peteghem and
Vanhoucke (2014) and carried out on a PC with an Intel Xeon X5650 CPU at 2.66 GHz.
The algorithm is implemented in C# and CPLEX 12.6.3 was used as solver.

Although �nding a feasible mode assignment is already NP-complete if the instance
has more than one non-renewable resource (Kolisch and Drexl (1997)) the procedure is
quite fast. The computation of the lower bounds took 24.03 seconds on average, with



4

a minimum of 0.01 seconds for 204 instances and a maximum of 109.91 seconds for an
MMLIB+ instance with 100 activities and 9 modes. Table 1 shows the results for the
computational experiments.

Table 1. Computational experiments for the Feasible Mode Capacity Bound on the MMLIB

MMLIB50 MMLIB100 MMLIB+ Sum

total number of instances 540 540 3 240 4 320

Best known solution = CP-LB 229 264 473 966

Feasible Mode Capacity Bound > CP-LB 107 120 1 878 2 105

For 966 instances the best known solution is already equal to the Critical Path Bound

and therefore optimal. The presented procedure was able to �nd a better Feasible Mode Ca-

pacity Bound compared to Critical Path Bound for 2 105 of the remaining 3 354 instances.

4 Conclusion

This work presented a new approach for computing lower bounds for the MRCPSP.
The computational experiments showed that the procedure is able to improve the lower
bound for 67.76% of the MMLIB instances without a known optimum. Furthermore, the
experiments showed that the computation time of the approach is reasonably low with a
few seconds for most of the MMLIB instances.
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