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1 Introduction

In the open shop problem sets of jobs J = {J1, . . . , Jn} and machinesM = {M1, . . . ,Mm}
are given. Each of job Jj has to be processed by each machine Mi in arbitrary order, and
this operation takes a given processing time pji. The goal is to minimize the makespan
Cmax which is de�ned as a maximum completion time of the operation. We use notation
Om||Cmax for the problem withm machines. It is known (Gonzalez T.F. and Sahni S. 1976)
to be polynomially solvable in the case m = 2 and NP-hard for m ≥ 3.

We consider the routing open shop problem being a generalization of the metric TSP
and the open shop problem. Routing open shop, introduced in (Averbakh I. et. al. 2006,
Averbakh I. et. al. 2005), can be described as follows. Jobs are located at the nodes of
a transportation network described by an edge-weighted graph G = 〈V ;E〉, each node
contains at least one job. The weight dist(u, v) represents the travel time of any machine
between those nodes. Mobile machines are initially located at some prede�ned node v0 ∈ V
referred to as the depot. All the machines have to travel between nodes to process jobs
in an openshop-like environment, and to return to the depot after completion of all the
operations. The makespan Rmax is the return time moment of the last machine after
completion of all its operations, and has to be minimized. We denote this problem as
ROm||Rmax, or as ROm|G = X|Rmax in the case we want to specify the structure of the
transportation network. Problem is known to be NP-hard even in trivial cases with single
machine (equivalent to the metric TSP) and with two machines and just two nodes of
the network (including the depot)(Averbakh I. et. al. 2006). The latter case is denoted as
RO2|G = K2|Rmax.

Consider the following standard lower bound on the optimal makespan, proposed in
Averbakh I. et. al. (2005):

R̄ = max

{
`max + T ∗,max

v∈V
(dmax(v) + 2dist(v0, v))

}
.

Here `max = max
i

n∑
j=1

pji is the maximummachine load, dmax(v) = max
j∈J (v)

dj = max
j∈J (v)

(
m∑
i=1

pji

)
is the maximum length of job from node v, with J (v) being the set of jobs located at v.
T ∗ denotes the TSP optimum on G with distance function dist(u, v).

One of the directions of the research of an NP-hard optimization problem is optima
localization, i.e. the search of tight upper bound on the optimum in terms of the lower bound
LB. More precise, the tight optima localization interval is an interval of type [LB, ρLB]
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with the smallest possible value of ρ guaranteed to contain an optimum value for any
problem instance from a given set. The �rst tight optima localization interval for scheduling
problems was found for O3||Cmax in (Sevastyanov S.V. and Tchernykh I.D. 1998). This
research required massive computer-aided enumeration based on the branch-and-bound
method.

For the routing open shop problem this question was partly studied for the case of
two machines. It is proved in Averbakh I. et. al. (2005) that optimum of any instance of
RO2|G = K2|Rmax belongs to an interval [R̄, 65 R̄], and the bounds are tight. Lately this
result was generalized for the RO2|G = K3|Rmax (Chernykh I. and Lgotina E. 2016) and
RO2|G = tree|Rmax problems (Krivonogova O. and Chernykh I. 2019). Optima localization
for the problem with three or more machines is still an open question even in case G = K2.

2 Instance simpli�cation operations

The research of the optima localization for the two-machine case is based on an instance
reduction procedure which uses two simpli�cation operations: job aggregation and terminal
edge contraction.

Job aggregation operation (also known as grouping) utilizes a simple idea of replacing
a number of jobs from the same node with a single aggregated job for which processing
times equal to the total processing time of the respective operations combined. We use
job aggregation to simplify the instance preserving the standard lower bound R̄. A natural
question arises, is it possible to perform a job aggregation of a whole set of jobs at some
nodes. To answer that question, we use the following de�nition.

De�nition 1. A node v from G(I) of some problem instance I is overloaded if

∆(v) =
∑

Jj∈J (v)

dj > R̄− 2dist(v0, v).

Otherwise the node is referred to as underloaded.

The job aggregation of the whole set of jobs in node v preserves R̄ if and only if the node
v is underloaded.

Another operation, terminal edge contraction, is based on the following idea: translate
a single job from a terminal node v to an adjacent one u, modifying processing times of all
of its operations to include travel times (back and forth) between v and u.

Again, we want to perform an edge contraction operation only if it does not lead to
the growth of the standard lower bound R̄. Otherwise, the edge is called overloaded. The
following de�nition describes the exact condition, under which an edge is overloaded.

De�nition 2. Let v 6= v0 is a terminal node in G and there is a single job Jj ∈ J (v). Let
e = [u, v] be an edge incident to v. Then edge e is overloaded if

dj + 2mdist(u, v) + 2dist(v0, u) > R̄,

and is underloaded otherwise.

Overloaded elements make the instance somehow problematic. Fortunately, the number
of such elements is rather small.

Lemma 1. Any instance of the ROm||Rmax problem contains at most m − 1 overloaded
elements.

Moreover, the number of jobs in the simpli�ed instance is small. One of the main results
of our research is the following
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Lemma 2. Let I be an instance of the ROm||Rmax problem and any job aggregation in I
leads to the growth of R̄. Then every underloaded node in I contains exactly one job, and
all the overloaded nodes (if any) contain at most 2m− 1 jobs altogether.

Instance simpli�cation preserving the lower bound allows one to reduce the search for
the tight optima localization interval to the case with small number of jobs (depending on
m) and with simpler structure of the transportation network. The next section covers the
�rst attempts to discover optima localization interval for the three-machine routing open
shop.

3 Optima localization for RO3|G = K2|Rmax

For any instance of RO3|G = K2|Rmax we use v to denote the node other than the
depot.

Back in 1998 Sevastyanov and Chernykh used a computer program to prove that for
any instance of O3||Cmax (which is equivalent to RO3|G = K1|Rmax) optimal makespan
does not exceed 4

3 times standard lower bound. The program is based on an intelligent
branch-and-bound-style enumeration of subsets of instances (with in�nite cardinality). For
each subset a critical instance with the greatest ratio of upper and lower bounds of the
optimal makespan was found with a help of linear programming. The proof follows from
the facts that the enumeration is complete (union of the subsets considered coincides with
the whole sets of instances), and for each critical instance found the upper bound is within
the range of 4

3 R̄. It took about 200 hours of running time to complete the proof, including
building the structure of subsets and the search for critical instances for each one. As it
was clear that a direct application of the same approach would take enormous amount of
time, we focused our research on the possibilities to make the proof-building process more
e�cient. As a result, we were able to complete the research of the optima localization of
the RO3|G = K2|Rmax problem and to prove the following theorem constructively.

Theorem 1. For any instance of the RO3|G = K2|Rmax problem there exists a feasible
schedule S such that Rmax(S) ≤ 4

3 R̄.

One part of the proof is based on a description of a set of su�cient conditions which
allow to reduce an instance to the case of O3||Cmax. Another one used the computer-
aided approach with some �ne-tuning applied. As a result, the proof-building process was
complete in about 28 hours.

Let us focus on the running time reduction techniques. First idea was to try to reduce
the set of instances as much as possible without loss of generality. This is done by means
of the following two lemmas.

Lemma 3. For any instance of RO3|G = K2|Rmax with underloaded node v and pmax =
max pji > 2

3 R̄ the optimal makespan does not exceed 4
3 R̄.

Lemma 4. Let I be an instance for RO3|G = K2|Rmax problem such that ∆(v0) > 2R̄.
Then R∗max 6 4

3 R̄.

The in�uence of the application of di�erent combinations of these restrictions on the run-
ning time for one of the special cases of the problem is presented in Table 1.

As one can observe, that in�uence is not that noticeable. Luckily, we discovered another
reserve which surprisingly allowed one to reduce running time signi�cantly.

Second idea was to reduce the set of instances by using symmetries induced by di�erent
enumerations of jobs and machines.
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∆(v0) ≤ 2R̄ ∆(v0) is arbitrary

pmax ≤ 2
3
R̄ 17:52 min. 19:27 min.

pmax is arbitrary 20:27 min. 29:31 min.
Table 1. Running time of the original program depending on the restriction applied.

∆(v0) ≤ 2R̄ ∆(v0) is arbitrary

pmax ≤ 2
3
R̄ 00:10 min. 01:45 min.

pmax is arbitrary 00:09 min. 02:14 min.
Table 2. Running time of the modi�ed program depending on the restriction applied.

Further ways to improve e�ciency are based on details of the computer-aided approach
and cannot be fully disclosed in the format of the current abstract. The results are covered
in Table 2.

Thus we were able to reduce the running time (for one of the special cases) by the factor
of almost 200, which gives us hope that the computer-aided approach can still be used for
wider classes of problems, i.e. O4||Cmax (an intriguing case, as we no evidence that the
optimal makespan can be greater than 4

3 R̄), RO3|G = K3|Rmax and so on.

4 Conclusion

The main results of this paper are the following.

1. Description of the extremal properties of overloaded elements of ROm||Rmax problem.
2. The optima localization of the special case of the RO3|G = K2|Rmax problem.
3. Developments of the computer-aided approach with a signi�cant reduction of the run-

ning time.

An intriguing open question from (Sevastyanov S.V. and Tchernykh I.D. 1998) still
remains: does there exist an analytic proof of Theorem 1 (as well as the optima localization
result for O3||Cmax), such that doesn't require any computer-aided enumeration.
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