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1 Introduction

The classical resource-constrained project scheduling problem (RCPSP) consists of
scheduling a set of activities, subject to resource and precedence constraints, in order
to minimise the project makespan. The applicability of the RCPSP, however, is limited by
the following two assumptions: 1. only finish-to-start, zero time-lag precedence relation-
ships exist between activities, and 2. the resource requirements of each activity are fixed
and constant throughout its duration. In practice, rarely do these assumptions hold true.

The extension of the RCPSP to include generalised precedence relationships addresses
the first limiting assumptions, and is a well studied problem for which a number of exact
(Bartusch, Möhring & Radermacher 1988, De Reyck & Herroelen 1998, Schutt, Feydy,
Stuckey & Wallace 2013) and heuristic (Franck, Neumann & Schwindt 2001, Ballestín,
Barrios & Valls 2011) solution methods have been developed. We refer to this problem as
the generalised resource-constrained project scheduling problem (GRCPSP).

More recently, the resource-constrained project scheduling problem with flexible re-
source profiles (FRCPSP) has been introduced to address the second limiting assumption
of the RCPSP. This problem assumes only that the total amount of resource that is re-
quired to complete each activity is known, and that, as well as the start time, the resource
allocation for each activity must be determined. Whilst heuristic approaches have provided
the most success in solving the FRCPSP (Fündeling & Trautmann 2010, Tritschler, Naber
& Kolisch 2017), a number of exact mixed-integer programming (MIP) formulations have
also been developed (Naber & Kolisch 2014, Naber 2017).

Here, we introduce the generalised resource-constrained project scheduling problem
with flexible resource profiles (GFRCPSP) to combine these two extensions of the RCPSP
into a single model. The GFRCPSP is an NP-hard problem for which realistically sized
instances cannot be solved exactly, and hence, in addition to proposing a MIP formulation
for this problem, we also propose a genetic algorithm (GA) based on a non-greedy serial
schedule generation scheme with an unscheduling step.

2 Problem description

A project consists of a set of non-preemptive activities V = {0, 1, . . . , n, n+ 1}, where
0 and n+1 are dummy source and sink activities. The GFRCPSP consists of determining
a start time and resource profile of each activity, subject to a set of resource constraints
and generalised precedence relationships, in order to minimise the project makespan.

There exist four types of generalised precedence relationship: start-to-start, start-to-
finish, finish-to-start and finish-to-finish. Every generalised precedence relationship in a



2

project has an associated minimal or maximal time-lag, which together create a feasible
time-window for the processing of each activity. In the GRCPSP, since the duration of each
activity is known a priori, each of the four types of relationship can be transformed into a
single type (Bartusch et al. 1988). In the GFRCPSP however, since activity durations are
variables, these transformations do not apply, and each relationship type remains distinct.
Maximal time-lags however, can be converted into negative minimal time-lags going in the
opposite direction, which allows the set of project precedence constraints to be represented
on a network, such as the one shown in Figure 1.

We define resource constraints for the GFRCPSP in the same way that Naber & Kolisch
(2014) define them for the FRCPSP. The total resource allocated to each task i ∈ V over
its duration must at least satisfy its total resource requirement wi, whilst adhering to
upper and lower bounds on its per period resource allocation, q

i
and qi, and a so-called

minimum block length, lmin (Fündeling & Trautmann 2010), that is, the minimum number
of time periods for which the resource allocation to an activity must remain constant. All
resources r ∈ R are assumed to be renewable, continuous, and have limited availability
Rmax

r . It is also assumed that there are three types of resource: principle, dependent and
independent. The allocation of principle resource to an activity determines the allocation of
each dependent resource to that activity through a linear resource-function. The allocation
of independent resources to an activity is fixed and independent of the allocation of the
other resources.

Fig. 1. An example GFRCPSP network with five non-dummy activities, a lmin = 2, and a single
resource with Rmax = 6. Arc labels indicate lower bounds on precedence relations. The chart
shows an optimal solution to this problem.

3 Solution approaches

The GFRCPSP can be modelled by adapting the FP-DT3 model proposed by Naber &
Kolisch (2014) for the FRCPSP. For brevity, we omit this formulation from this abstract.
Solving this MIP model becomes intractable as instance sizes get larger, and hence we also
propose a schedule generation scheme-based heuristic (Kolisch & Hartmann 1999) and GA
for finding good solutions to realistically-sized instances in a reasonable time. We outline
this scheduling heuristic and GA here.

The scheduling heuristic we propose is a non-greedy serial schedule generation scheme
(SGS) with unscheduling step. This algorithm takes an activity list as input, and constructs
a complete solution by scheduling activities one at a time in the given order. Each activity
is started as early as possible and with as much resource as possible, subject to ‘delay’
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and ‘greediness’ parameters (Tritschler et al. 2017), which are used to encourage non-
greedy scheduling. This is desirable, since an optimal solution for a given instance cannot
necessarily be found using a purely greedy SGS (Fündeling & Trautmann 2010).

If a resource constraint is violated whilst scheduling an activity, the algorithm attempts
to re-start the activity at the next resource-feasible start time. If a precedence constraint is
violated, an unscheduling step is invoked to reschedule the activities that cause either the
missed latest start or latest finish time, and start them closer to the activity with which
they have a maximum time-lag with the aim of restoring the feasibility of the schedule.
If the unscheduling step fails to feasibly reschedule the activities after a given number of
attempts, the schedule is completed infeasibly and the total number of time periods by
which precedence constraints are missed is recorded.

A GA is used to search over individual solutions, each of which consists of an activity list,
and delay and greediness parameters for each activity. An initial population of individuals
is generated randomly subject to precedence feasibility. Each individual is scheduled using
the above heuristic. The ‘fitness’ of a feasible schedule is equal to its makespan, whilst
the fitness of an infeasible schedule is equal to the total number of time periods by which
precedence relationships are missed, plus a fixed penalty. New individuals are obtained
using the adapted two-point crossover of Franck et al. (2001), which is designed to keep
activities that are related by a maximal time-lag close together in the resulting activity
list, thus increasing the likelihood of finding a feasible solution. The mutation operator
of Hartmann (1998) is applied to each offspring solution. Having produced enough new
individuals to double the original population size, the next generation is chosen using
3-tournament selection. The next generation has the same size as the original population.

4 Results and conclusions

Table 1 compares the results of the proposed GA and scheduling heuristic with the re-
sults of solving the FP-DT3-based MIP model. The two approaches are tested over five sets
containing instances with 10, 20, 30, 50 and 100 activities respectively. Each of the five sets
set contains 30 instances for three different values of resource strength (Kolisch, Schwindt
& Sprecher 1999), resulting in a total of 450 instances. Resource strength (RS) measures
the restrictiveness of the resource availability, with a smaller RS generally indicating a
more challenging problem. These instances have been created using a new GFRCPSP in-
stance generator we have developed as an extension to the ProGen/max project generator
(Kolisch et al. 1999).

Table 1 shows the average percentage gap to the critical-path based lower bound of
solutions found by the two solution methods. For each instance, the GA searched 50,000
schedules, whilst a limit of 2 hours was allowed for solving the MIP. To enable a fair
comparison between the two solution methods, the instances for which both approaches
find a feasible solution have been presented separately from those for which only the GA
finds a feasible solution. There are no instances where only the MIP finds a feasible solution.
These results show the MIP performing well on instances with 10 and 20 activities, but
dramatically worsening over the larger test sets, as expected. In contrast, the quality of
the solutions found by the GA remain roughly constant across the five test sets.

In conclusion, the GFRCPSP has been introduced to combine two existing extensions
to the RCPSP. The GFRCPSP can be solved for small instances as an MIP, whilst a new
scheduling heuristic and GA has been proposed for solving larger instances. Future work
will include the application of this new model to a real-world scheduling problem, as well
as further improvements to the metaheuristic approach proposed here, perhaps with the
introduction of a local improvement step.
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MIP & GA Only GA
Test set RS # ∆MIP

lb ∆GA
lb # ∆GA

lb

P10
0.05 30 10.90 13.14 0 -
0.15 30 2.17 3.24 0 -
0.25 30 0.49 0.49 0 -

P20
0.05 30 19.37 19.65 0 -
0.15 30 0.25 0.49 0 -
0.25 30 0.00 0.00 0 -

P30
0.05 28 150.81 13.43 2 10.71
0.15 29 0.00 0.00 1 0
0.25 30 14.56 0.00 0 -

P50
0.05 0 - - 30 25.24
0.15 6 617.23 0.00 24 0.00
0.25 29 769.84 0.00 1 0.00

P100
0.05 0 - - 30 18.81
0.15 3 1029.66 0.00 27 0.00
0.25 29 1442.55 0.00 1 0.00

Table 1. Average percentage gap to the critical path-based lower bound of solutions found by the
MIP and GA. These values are denoted by ∆MIP

lb and ∆GA
lb , respectively.
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