
Solving the stochastic multimode resource-constrained project

scheduling problem

Claudio Szwarcfiter1, Avraham Shtub2, and Yale T. Herer3

Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology, Haifa, Israel
1e-mail: claudioszw@campus.technion.ac.il

2e-mail: shtub@technion.ac.il

3e-mail: yale@technion.ac.il

Keywords: Stochastic resource-constrained project scheduling, multimode project management,

stability and robustness in project management, reinforcement learning.

1. Introduction

The resource-constrained project scheduling problem (RCPSP) is a classic problem in project

management, and its extensions, the multimode and the stochastic RCPSP (MRCPSP and

SRCPSP), have received considerable attention. A standard procedure for solving these problems

is the employment of heuristic methods, since the RCPSP is known to be NP-hard. However, less

attention has been paid to the advances in artificial intelligence, particularly reinforcement learning

(RL), and the opportunities they present for improving the search.

In this paper, we provide a novel RL-based approach for solving a version of the stochastic

multimode RCPSP (SMRCPSP). This approach provides effective exploration of the search space,

scanning a wide range of combinations of activity modes and start times, while simultaneously

exploiting the learned knowledge. Our experiments currently being conducted suggest that the RL

algorithm combines speed with performance close to the optimum.

2. Problem and solution approach

We model our SMRCPSP based on the flow-based formulation described in Artigues et al. (2015),

expanding it for a multimode setting. Furthermore, we consider stochastic activity durations;

therefore, the duration constraints cannot, in general, be guaranteed with certainty and thus we will

model them as chance constraints. One way of solving the resulting stochastic program is by

scenario optimization (SO), introduced in Calafiore and Campi (2005). The idea is to take S

samples, or scenarios, of the realization of the random variables in the constraints—in our case, the

activity durations—and substitute the deterministic scenario constraints for the stochastic chance

constraints. The result is a mixed-integer linear program (MILP).

We consider a project with J activities. Each activity j can be executed in one of jM modes

and is preceded by a set of immediate predecessors  jP . Each activity j executed in mode m in

scenario s has a duration jmsd . There are K different renewable resources. Activity j executed in

mode m needs
k

jmr units of resource k, which has a total availability of .kR jsES and jsLS are the

earliest and latest start for activity j in scenario s, respectively. Decision variable D is the project

delivery date. We set parameter  as the desired probability of the project finishing within the

delivery date, and  as an upper bound for delivery date overrun. Binary decision variable jm

indicates if activity j is carried out in mode m and decision variable jst denotes, for scenario s, the

starting time of activity , 0,..., 1j j J  , where 0j  and 1J J  are dummy activities with a

single mode, no duration and resources, and represent the start and end of the project, respectively.

Binary decision variable ijz indicates (value 1) if activity j starts after activity i finishes. The

amount of resource k transferred from activity i to activity j is modeled by the flow variable
k

ij .

mailto:shtub@technion.ac.il
mailto:yale@technion.ac.il

s is a binary decision variable indicating whether, in scenario s, the project finishes within the

delivery date. The model is as follows.

Min ,D (1)

Subject to:

 1, 1 , 1,..., ,J s st D s S       (2)

1

,
S

s

s

S 


 (3)

1, 0,..., , 1,..., 1, ,ij jiz z i J j J i j         (4)

1, , , 0,..., 1, ,ij jh ihz z z i j h J i j h         (5)

 1, , 1,..., 1,ijz i j j J     P (6)

1

, , 0,..., 1, , 1,... ,
iM

js is ij im ims

m

t t Mz d M i j J i j s S


           (7)

, 0,..., 1, 1,..., ,js js jsES t LS j J s S       (8)

           max, max,

max,

1,..., 1,...,

min , 1 min , 1 min , 0,

 if 0 1
where max max , max and

 if 0 or i j

k k k k k k k k k

ij im jm ij im ij im jm jm ij im jm

k

k k k k jm

ij im jm j m km M m M

r r z r r r r r r

r j n
r r r r

R j j

     

 
 

       

   
  

  

% % % % % % % %

% % %
1,

0,..., , 1,..., 1, , 1,..., , 1,..., , 1,..., ,i j

n

i J j J i j k K m M m M




 

            

 (9)

1

1, 0,..., 1,
jM

jm

m

j J


    (10)

   1,..., 1 \ 1

, 0,..., , 1,..., ,
iM

k k

ij im im

j J i m

r i J k K 
  

     % (11)

   0,..., \ 1

, 1,..., 1, 1,..., ,
jM

k k

ij jm jm

i J j m

r j J k K 
 

      % (12)

1,..., 1,...,
0 min max , max , 0,..., , 1,..., 1, ,

1,..., .

i j

k k k

ij im jm
m M m M

r r i J j J i j

k K


 

 
         

 

 

% %
 (13)

The objective function (1) aims to minimize the project delivery time. Constraints (2) indicate

whether a scenario finishes on time. Constraint (3) counts the fraction of scenarios that finish on

time and forces it to remain above the predetermined threshold. Constraints (4) and (5) avoid

cycles of 2 and 3 or greater, respectively. Constraints (6) enforce the precedence constraints.

Constraints (7) link the continuous activity start time variables with the binary sequencing

variables. Constraints (8) give upper and lower bounds for the activity start times. Constraints (9),

from Balouka and Cohen (2019), connect the continuous resource flow variables with the binary

sequencing variables and the binary mode variables. Constraints (10) force the selection of only

one mode per activity. Outflow constraints (11) ensure that all activities, except for 1,J  send

their resources to other activities. Inflow constraints (12) ensure that all activities, except for

activity 0, receive their resources from other activities. Constraints (13) bound the flow variables

with the maximum resource consumption modes.

2.1. Reinforcement learning solution approach

Reinforcement Learning (RL) has been shown to be successful in diverse applications with

uncertain environments. This success is the factor motivating the application of RL to our

stochastic environment. To the best of our knowledge, multimode problems involving stochastic

activity duration have not yet been tackled with RL.

Our RL model starts with an agent at project activity j. The agent undertakes an action by

choosing a mode ˆ
jm and start time ˆ

jt for activity j and then moves on to the next activity. After

selecting modes and start times for all activities 1,..., ,j J she receives a reward  , , .j m tR The

agent follows a policy  , ,j m t that tells her at each activity which action she should take. We

further define an action-value function  , ,q j m t as the estimated reward for taking an action at

activity j and thereafter following policy  , , .j m t The RL problem’s objective is to learn a

policy that maximizes the agent’s reward. We use Monte Carlo Control (MCC), based on Sutton

and Barto (1998). Figure 1 presents our main MCC pseudocode.

Initialize action-values

while not stopping criterion:

 calculate policy

 choose mode and start time

 calculate reward

 update action-values RL1

 or update action-values RL2
Figure 1. MCC pseudocode.

Our algorithm starts with the initialization of the action-values table with artificially high

values. The action-values table is then used to calculate the policy. To balance exploration and

exploitation we adopt an ε-greedy policy, meaning that in the policy table we ascribe a probability

ε of taking a random action and a probability  1  of taking a greedy action, i.e. the action with

the highest action-value. Next, we take an action based on the policy, choosing for each activity

the mode and start time according to the probabilities in the policy table. Then, we calculate the

reward for the actions taken as  1/ ,D where D is the delivery date for on-time probability .

The last step in the algorithm is to update the action-value table using the reward. We can choose

from two update methods, RL1 and RL2: RL1 learns an action-value by averaging all the rewards

this action has received each time it was taken. RL2 updates the action-values giving an

exponentially large weight to the last action.

3. Experimental setting and partial results

To validate the RL procedure we propose a factorial experiment, summarized in Table 1, as

follows. We will compare three project sizes, each with three modes per activity. For the 10-

activity projects we will use the PSPLIB datasets (Kolisch and Sprecher, 1997), and for the 50 and

100-activity projects, the MMLIB datasets (Van Peteghem and Vanhoucke, 2014), generating

additional data for the stochastic activity durations. We will run our RL algorithm using both

methods for updating the action-values: RL1 and RL2, as described in Section 2.1. The delivery

dates obtained with both variants will be compared to those from two benchmarks: the best

combination of mode and activity priority rules (Peng, Huang and Yongping, 2015) and a solution

for our MILP, using the Gurobi 8.1 solver. We will compare two types of constraints: solving the

deterministic problem and then simulating realized durations to generate the delivery date, and

solving directly the chance-constrained problem; in both cases, we will set the desired probability

of the project finishing within the delivery date 0.95. 

Table 1. Partial factorial design.

Project size Algorithm Constraints

10 RL1 Chance constraints

50 RL2 Deterministic

100 Solver

 PR

The algorithm is currently being executed and evaluated and we will be reporting the results in

the conference. We present here partial results for 10-activity projects. Chance-constrained RL1

(CRL1) outperformed the other algorithms. Figure 2 provides a comparative view of project

delivery for 10-activity projects; for clarity, we show only three curves: CRL1, chance-constrained

solver (CS) and deterministic-constrained priority rules (DPR). CRL1, represented by the solid

line, is consistently below the other curves. In fact, Wilcoxon signed rank tests for pairwise

comparisons between CRL1 and all the other methods, showed that CRL1 generated shorter

deliveries with p-value 0.0001.

Figure 2. 10-activity projects: Overlay plot comparing CRL1 with DPR and CS; for clarity, we show here a
random subsample of 100 projects from the 535-project sample

4. Conclusions

In this paper, we presented a flow-based formulation of a variant of the SMRCPSP. The objective

is to minimize the project delivery date and we introduce a constraint imposing a lower bound on

the probability of finishing within this date. We described a novel RL-based approach for solving

the problem and proposed a partial factorial design for the evaluation of our method. We have

completed experiments for 10-activity projects and have concluded, with statistical significance,

that for this project size, our RL approach renders shorter schedules than both the best priority

rules, and the MILP solutions obtained with the solver using SO. We will be reporting the main

results for the full experiment at the conference.

Acknowledgements

This study has received funding from EIT Food, the innovation community on Food of the

European Institute of Innovation and Technology (EIT), a body of the EU under the Horizon 2020,

the EU Framework Programme for Research and Innovation, project number 19147, and from the

Bernard M. Gordon Center for Systems Engineering at the Technion.

References

Artigues, C. et al. (2015), ‘Mixed-integer linear programming formulations’, in Handbook on

Project Management and Scheduling Vol.1. Cham: Springer International Publishing, pp. 17–

41.

Balouka, N. and Cohen, I. (2019), ‘A robust optimization approach for the multi-mode

resource-constrained project scheduling problem’, to be published in European Journal of

Operational Research [Preprint].

Calafiore, G. and Campi, M. C. (2005), ‘Uncertain convex programs: Randomized solutions

and confidence levels’, Mathematical Programming, 102(1), pp. 25–46.

Kolisch, R. and Sprecher, A. (1997), ‘PSPLIB – A project scheduling problem library’,

European Journal of Operational Research, 96(1), pp. 205–216.

Peng, W., Huang, M. C. and Yongping, H. (2015), ‘A multi-mode critical chain scheduling

method based on priority rules’, Production Planning and Control, 26(12), pp. 1011–1024.

Van Peteghem, V. and Vanhoucke, M. (2014), ‘An experimental investigation of

metaheuristics for the multi-mode resource-constrained project scheduling problem on new

dataset instances’, European Journal of Operational Research. North-Holland, 235(1), pp.

62–72.

Sutton, R. S. and Barto, A. G. (1998), Reinforcement learning: An introduction. MIT Press.

