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1. Introduction 

The resource-constrained project scheduling problem (RCPSP) is a classic problem in project 

management, and its extensions, the multimode and the stochastic RCPSP (MRCPSP and 

SRCPSP), have received considerable attention. A standard procedure for solving these problems 

is the employment of heuristic methods, since the RCPSP is known to be NP-hard. However, less 

attention has been paid to the advances in artificial intelligence, particularly reinforcement learning 

(RL), and the opportunities they present for improving the search.  

In this paper, we provide a novel RL-based approach for solving a version of the stochastic 

multimode RCPSP (SMRCPSP). This approach provides effective exploration of the search space, 

scanning a wide range of combinations of activity modes and start times, while simultaneously 

exploiting the learned knowledge. Our experiments currently being conducted suggest that the RL 

algorithm combines speed with performance close to the optimum. 

2. Problem and solution approach 

We model our SMRCPSP based on the flow-based formulation described in Artigues et al. (2015), 

expanding it for a multimode setting. Furthermore, we consider stochastic activity durations; 

therefore, the duration constraints cannot, in general, be guaranteed with certainty and thus we will 

model them as chance constraints. One way of solving the resulting stochastic program is by 

scenario optimization (SO), introduced in Calafiore and Campi (2005). The idea is to take S 

samples, or scenarios, of the realization of the random variables in the constraints—in our case, the 

activity durations—and substitute the deterministic scenario constraints for the stochastic chance 

constraints. The result is a mixed-integer linear program (MILP).  

We consider a project with J activities. Each activity j can be executed in one of jM  modes 

and is preceded by a set of immediate predecessors  jP . Each activity j executed in mode m in 

scenario s has a duration jmsd . There are K different renewable resources. Activity j executed in 

mode m needs 
k

jmr  units of resource k, which has a total availability of .kR  jsES  and jsLS  are the 

earliest and latest start for activity j in scenario s, respectively. Decision variable D is the project 

delivery date. We set parameter   as the desired probability of the project finishing within the 

delivery date, and   as an upper bound for delivery date overrun. Binary decision variable jm  

indicates if activity j is carried out in mode m and decision variable jst  denotes, for scenario s, the 

starting time of activity , 0,..., 1j j J  , where 0j   and 1J J   are dummy activities with a 

single mode, no duration and resources, and represent the start and end of the project, respectively. 

Binary decision variable ijz  indicates (value 1) if activity j starts after activity i finishes. The 

amount of resource k transferred from activity i to activity j is modeled by the flow variable 
k

ij . 
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s  is a binary decision variable indicating whether, in scenario s, the project finishes within the 

delivery date. The model is as follows.    
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The objective function (1) aims to minimize the project delivery time. Constraints (2) indicate 

whether a scenario finishes on time. Constraint (3) counts the fraction of scenarios that finish on 

time and forces it to remain above the predetermined threshold. Constraints (4) and (5) avoid 

cycles of 2 and 3 or greater, respectively. Constraints (6) enforce the precedence constraints. 

Constraints (7) link the continuous activity start time variables with the binary sequencing 

variables. Constraints (8) give upper and lower bounds for the activity start times. Constraints (9), 

from Balouka and Cohen (2019), connect the continuous resource flow variables with the binary 

sequencing variables and the binary mode variables. Constraints (10) force the selection of only 

one mode per activity. Outflow constraints (11) ensure that all activities, except for 1,J   send 

their resources to other activities. Inflow constraints (12) ensure that all activities, except for 

activity 0, receive their resources from other activities. Constraints (13) bound the flow variables 

with the maximum resource consumption modes. 

2.1. Reinforcement learning solution approach 

Reinforcement Learning (RL) has been shown to be successful in diverse applications with 

uncertain environments. This success is the factor motivating the application of RL to our 

stochastic environment. To the best of our knowledge, multimode problems involving stochastic 

activity duration have not yet been tackled with RL.  

Our RL model starts with an agent at project activity j. The agent undertakes an action by 

choosing a mode ˆ
jm  and start time ˆ

jt  for activity j and then moves on to the next activity. After 

selecting modes and start times for all activities 1,..., ,j J  she receives a reward  , , .j m tR  The 



agent follows a policy  , ,j m t  that tells her at each activity which action she should take. We 

further define an action-value function  , ,q j m t  as the estimated reward for taking an action at 

activity j and thereafter following policy  , , .j m t  The RL problem’s objective is to learn a 

policy that maximizes the agent’s reward. We use Monte Carlo Control (MCC), based on Sutton 

and Barto (1998). Figure 1 presents our main MCC pseudocode. 

Initialize action-values 

while not stopping criterion: 

 calculate policy 

 choose mode and start time 

 calculate reward 

 update action-values RL1 

 or update action-values RL2 
Figure 1. MCC pseudocode. 

Our algorithm starts with the initialization of the action-values table with artificially high 

values. The action-values table is then used to calculate the policy. To balance exploration and 

exploitation we adopt an ε-greedy policy, meaning that in the policy table we ascribe a probability 

ε of taking a random action and a probability  1   of taking a greedy action, i.e. the action with 

the highest action-value. Next, we take an action based on the policy, choosing for each activity 

the mode and start time according to the probabilities in the policy table. Then, we calculate the 

reward for the actions taken as  1/ ,D  where D is the delivery date for on-time probability .  

The last step in the algorithm is to update the action-value table using the reward. We can choose 

from two update methods, RL1 and RL2: RL1 learns an action-value by averaging all the rewards 

this action has received each time it was taken. RL2 updates the action-values giving an 

exponentially large weight to the last action. 

3. Experimental setting and partial results 

To validate the RL procedure we propose a factorial experiment, summarized in Table 1, as 

follows. We will compare three project sizes, each with three modes per activity. For the 10-

activity projects we will use the PSPLIB datasets (Kolisch and Sprecher, 1997), and for the 50 and 

100-activity projects, the MMLIB datasets (Van Peteghem and Vanhoucke, 2014), generating 

additional data for the stochastic activity durations. We will run our RL algorithm using both 

methods for updating the action-values: RL1 and RL2, as described in Section 2.1. The delivery 

dates obtained with both variants will be compared to those from two benchmarks: the best 

combination of mode and activity priority rules (Peng, Huang and Yongping, 2015) and a solution 

for our MILP, using the Gurobi 8.1 solver. We will compare two types of constraints: solving the 

deterministic problem and then simulating realized durations to generate the delivery date, and 

solving directly the chance-constrained problem; in both cases, we will set the desired probability 

of the project finishing within the delivery date 0.95.    

Table 1. Partial factorial design. 

Project size Algorithm Constraints 

10 RL1 Chance constraints 

50 RL2 Deterministic 

100 Solver  

 PR  

The algorithm is currently being executed and evaluated and we will be reporting the results in 

the conference. We present here partial results for 10-activity projects. Chance-constrained RL1 

(CRL1) outperformed the other algorithms. Figure 2 provides a comparative view of project 

delivery for 10-activity projects; for clarity, we show only three curves: CRL1, chance-constrained 

solver (CS) and deterministic-constrained priority rules (DPR).  CRL1, represented by the solid 

line, is consistently below the other curves. In fact, Wilcoxon signed rank tests for pairwise 

comparisons between CRL1 and all the other methods, showed that CRL1 generated shorter 

deliveries with p-value 0.0001.  



 

Figure 2. 10-activity projects: Overlay plot comparing CRL1 with DPR and CS; for clarity, we show here a 
random subsample of 100 projects from the 535-project sample 

4. Conclusions 

In this paper, we presented a flow-based formulation of a variant of the SMRCPSP. The objective 

is to minimize the project delivery date and we introduce a constraint imposing a lower bound on 

the probability of finishing within this date. We described a novel RL-based approach for solving 

the problem and proposed a partial factorial design for the evaluation of our method. We have 

completed experiments for 10-activity projects and have concluded, with statistical significance, 

that for this project size, our RL approach renders shorter schedules than both the best priority 

rules, and the MILP solutions obtained with the solver using SO. We will be reporting the main 

results for the full experiment at the conference. 
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