
Maximizing value—Modeling and solving lean project management

Claudio Szwarcfiter1, Avraham Shtub2, and Yale T. Herer3

Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology, Haifa, Israel
1
e-mail: claudioszw@campus.technion.ac.il

2
e-mail: shtub@technion.ac.il

3
e-mail: yale@technion.ac.il

Keywords: Lean project management, project scheduling, multimode project management,

stability and robustness in project management.

1. Introduction

Lean Project Management (LPM) is a comprehensive framework with the goal of creating value

and minimizing waste, in a minimum of time (Oehmen (Ed.), 2012). A key feature of LPM is the

integration of two disciplines, which until now have been kept separate: program management and

systems engineering. The former relates to project scope and the latter, to product scope.

The main contribution of our research is to provide a decision support tool for project

managers by modeling and solving a novel LPM application. The model’s objective is to

maximize project value subject to due date and budget constraints. Moreover, our model tackles

project risk, which often plays out in projects by causing unforeseen delays in activity durations,

ultimately leading to due date and budget overruns. Therefore, our model considers stochastic

activity durations, and the way we proactively manage risk is by generating a stable project plan in

which the due-date and budget violation probabilities are kept within a desired threshold.

Project scope and product scope integration—which is key to LPM—is achieved in our model

using a multimode approach, in which each project activity can be executed in one or more modes

or alternatives. The integrative feature is that each activity mode, apart from containing

information on the project scope, such as stochastic duration parameters, fixed and resource costs,

also embodies data on the product scope, i.e., value parameters. Thus, when a mode is chosen, not

only does the choice impact the project duration, cost, and associated risks, but also the project

value. For example, for the activity “antenna design” in a radar project, there could be two modes:

“re-engineer” and “new design”; associated with each mode we could have a radar range

parameter, so that the mode choice would affect the overall radar range.

To the best of our knowledge, this is the first attempt to assist lean project managers and their

teams with a decision support tool that models and solves the project planning problem focusing

not only on the project scope (the work to be done) but also on the product scope (the features and

functions of the product).

2. Problem and solution approach

We consider a project with J activities. Each activity j can be executed in one of jM modes. The

parameter jmvV designates the value of attribute v for activity j executed in mode m. Decision

variable j vV  corresponds to the value of attribute v for activity j executed in its chosen mode. We

define a function  1 ,...,v v J vF V V  that determines the project value for each attribute v given the

individual attributes ,jvV  and a function  1,..., VV F F that calculates the project value given the

values for each attribute. Binary decision variable jm indicates if activity j is carried out in mode

m. The objective of our model is to maximize the project value, which is a project-specific

function of the chosen modes and can be a non-linear function:

     1 11 1 1Maximize ,..., ,..., ,..., ,J V V JVV F V V F V V   

mailto:shtub@technion.ac.il
mailto:yale@technion.ac.il

where

1

, 1,..., , 1,..., .
jM

jv jm jmv

m

V V v V j J


     

We formulate the deterministic version of our problem as a mixed integer program subject to

duration and cost constraints. If we now consider stochastic activity durations, the duration

constraints cannot, in general, be guaranteed with certainty and thus we model them as chance

constraints. One way of solving the resulting stochastic program is by Scenario Optimization (SO),

introduced in Calafiore and Campi (2005) and applied in recent project scheduling papers. The

idea is to take S samples, or scenarios, of the realization of the random variables in the

constraints—in our case, the activity durations—and substitute the deterministic scenario

constraints for the stochastic chance constraints. Thus, if our objective function is linear, the new

SO program is a mixed integer linear program (MILP), and can be solved with a commercial

solver. We use this method as a benchmark in the computational experiments.

2.1. Reinforcement learning solution approach

Reinforcement Learning (RL) has been shown to be successful in diverse applications with

uncertain environments. This success is the factor motivating our application of RL to learning the

activity modes that maximize value in a stochastic environment. RL-based heuristics have also

been applied to project scheduling, but to the best of our knowledge, problems involving stochastic

activity duration or project value have not yet been tackled with RL. Hence, another contribution

of our research is applying RL to this problem.

The RL model starts with an agent in a state . The agent undertakes action  and moves to

state ,S receiving a reward .R She then executes action ,A moving to state S and receiving

a reward ,R and so on. We can thus represent the agent’s life trajectory as

, , , , , , , , , , ,        S A R S A R S A R S A etc. The agent follows a policy  , S A that tells her at

each state which action she should take. The RL problem’s objective is to learn a policy that

maximizes the agent’s reward. We further define an action-value function  ,q S A as the

estimated reward for taking action  on state  and thereafter following policy  , . S A

Applying the RL model to our problem, we define a state as project activity j. The agent

undertakes an action by choosing a mode ˆ
jm for activity j and then moves on to the next activity.

After selecting modes for all activities  ˆ , 1,..., ,jm j J  she receives a reward, which we define

as the project value V  if, after a number of simulation runs with the chosen modes, the

proportion of projects on time and on budget is more than or equal to the pre-defined on-time and

on-budget probabilities; otherwise, the reward is zero. To balance exploration and exploitation, we

employ ε-greedy policies, in which we set a probability ε of choosing a random mode for an

activity; otherwise, a mode is chosen greedily, i.e., the one that has the highest action-value. We

employ two alternative methods for updating the action-values. The first is Average Rewards

(RL1), in which the action-values are calculated by averaging the rewards accrued every time a

certain mode is chosen for a certain activity. The second method is Constant Step (RL2), which

tries to leverage the learning by giving an exponentially larger weight to the last actions. We use a

RL procedure known as Monte Carlo Control (MCC; based on Sutton and Barto, 1998), in which

first we initialize the action-values; then, we calculate the policy, choose the activity modes based

on the policy, calculate the reward accrued from this choice, and update the action-values using

RL1 or RL2; we then once again calculate the policy using the updated action-values, and so on

until the stopping criterion is met.

3. Experimental setting and main results

To validate the RL procedure we designed and conducted a factorial experiment, summarized in

Table 1, as follows. We ran the algorithms with deterministic (zero risk) and stochastic activity

durations and compared three project sizes, each with three modes per activity. For the 10-activity

projects we used the PSPLIB datasets (Kolisch and Sprecher, 1997), and for the 50 and 100-

activity projects, the MMLIB datasets (Van Peteghem and Vanhoucke, 2014). Both datasets are

the standard in the multimode project management literature. We ran our RL algorithm using both

methods for updating the action-values: RL1 and RL2, as described in Section 2.1. The project

values obtained with both variants were compared to those from two benchmarks, a genetic

algorithm (GA; Balouka, Cohen and Shtub, 2016) that seeks to maximize the project value for

deterministic problems, with populations of 500, 1000 and 10,000, and a solution for our mixed

integer program, in the case of linear objective functions (MILP), using the Gurobi 8.1 solver. For

our stochastic settings, we developed a new fitness function for the GA:

 
   

       

, if 0

_ feasible solutions _ all solutions , otherwise,

V I E I
f I

V I E I Min V Max V

 
 

    

where    ˆmax 0, proportion of on-budget runsE I   for a solution I, i.e., the selected mode

for each activity, and ̂ is the desired probability of the project finishing within the budget.

Table 1. Partial factorial design: All the combinations were tested, except GA10,000 for the stochastic trials and

Solver for nonlinear objective functions.

Project risk Project size Algorithm Objective function Stopping criterion

Deterministic 10 GA500 Linear GAS

Stochastic 50 GA1000 Nonlinear 5 min

 100 GA10,000 Max/near max

 RL1

 RL2

 Solver

For each project, we generated two objective functions: a linear one,

1 21 1
0.6 0.4

J J

j jj j
V V

 
   and a nonlinear one,

1 21 1
0.6 0.4 .

J J

j jj j
V V

 
   For the linear

objectives, we drew uniformly random value parameters jmvV from the sets  0,1,2,...,10 ,

 0,0.2,0.4,...,2 , and  0,0.1,0.2,...,1 for projects with J  10, 50 and 100 activities,

respectively. For the nonlinear objectives, we generated uniformly random parameters from the

sets   1

1 100 1 5 0,1,...,5Ja a   for experiments with J  10, 50 and 100 activities. Finally,

we compared three stopping criteria: stopping RL1 and RL2 at the same execution time it took for

the GA to converge (according to its published stopping criterion, two generations with the same

best value; GAS in Table 1);1 five minutes, which is a reasonable running time for applications in

industry; and the time it takes for the algorithms to give their best performance and produce a near-

optimal solution (“max/near max” in Table 1) – by simulation, we estimated this time to be 20

seconds for the 10-activity projects and 2 hours for 50 and 100 activities.

Table 2 shows the results for the deterministic experiments with nonlinear objectives and GAS

stopping criterion (we show here only GA population 1000), and Table 3 shows the same results

for the stochastic experiments. The columns show the number of projects tested, number of

activities, GA population, average running time for the GA, and the average percent differences of

the objective values; the alternative hypotheses H1 are tested using one-tailed sign tests to evaluate

whether one algorithm produces better solutions than the other and the p-values are presented. If

no significant difference is found, a two-tailed sign test is conducted and the alternative hypothesis

a b and p-value are recorded.
Table 2. Sign tests comparing RL to GA: Deterministic, nonlinear objective, stopping criterion GAs.

Proj Act PopGA TGA(s) RL1−GA H1 PV RL2−GA H1 PV RL1−RL2 H1 PV

535 10 1000 0.65 7.52 RL1>GA 0.000 8.91 RL2>GA 0.000 -1.23 RL2>RL1 0.000

540 50 1000 3.26 25.93 RL1>GA 0.000 5.63 RL2>GA 0.000 -0.94 RL2>RL1 0.003

540 100 1000 7.05 30.21 RL1>GA 0.000 27.97 RL2>GA 0.000 3.34 RL1>RL2 0.000

1 This stopping criterion generated near-optimal solutions for 10- and 20-activity projects using

populations of 500 and 1000 in Balouka, Cohen and Shtub, (2016).

Table 3. Sign tests comparing RL to GA: Stochastic, nonlinear objective, GAS stopping criterion.

Proj Act PopGA TGA(s) RL1−GA H1 PV RL2−GA H1 PV RL1−RL2 H1 PV

535 10 1000 119.18 7.70 RL1>GA 0.000 7.44 RL2>GA 0.000 1.80 RL1≠ RL2 0.166

120 50 1000 479.15 0.64 RL1≠GA 0.519 13.06 RL2>GA 0.000 -9.99 RL2>RL1 0.000

71 100 1000 798.01 -3.43 RL1≠GA 1.0 4.50 RL2≠GA 1.0 -4.13 RL1≠ RL2 0.453

Considering a significance level of 0.05, we can conclude that for the GAS stopping criterion

in the deterministic experiments, RL1 and RL2 render better solutions than GA across the board,

and the results are strongly significant. For the stochastic experiments, where the null hypothesis

was rejected, similar results were obtained.

4. Conclusions

In this paper, we presented a new model for LPM, maximizing value and providing stability by

complying with minimum on-time and on-budget probabilities set by the decision makers. We

developed a stochastic programming model with a SO formulation. We introduced a new RL

method to solve the problem, with two variants for action-value updates. We conducted a partial

factorial experiment, both with small 10-activity and with larger 50- and 100-activity projects,

comparing both RL variants with two benchmarks, a GA and, for linear objectives, a solution

using a commercial solver, reaching the following conclusions, with statistical significance:

1. The RL methods are the best option when we want to find good solutions in less time, as

they are much faster than the GA.

2. When given enough time to perform its best, the GA can outperform both RL variants,

and for a fixed running time, the GA achieves better results with smaller populations (e.g., 500).

3. RL2 generally reaches good results faster than RL1, but when both variants are given

enough time to perform their best, RL1 tends to give better results.

4. Although SO provides higher objective values for linear problems, it generates a higher

proportion of infeasible solutions when these are simulated with test sets, apart from also resulting

in long running times, typical of large MILP problems.

Our LPM modelling using RL opens avenues for new research. One research track could be

the enhancement of the problem setting, introducing, for example, resource constraints and

redefining the agent’s actions accordingly. Another track is the application of different RL

methods, such as Q-Learning and function approximation.

Acknowledgements

This study has received funding from EIT Food, the innovation community on Food of the

European Institute of Innovation and Technology (EIT), a body of the EU under the Horizon 2020,

the EU Framework Programme for Research and Innovation, project number 19147, and from the

Bernard M. Gordon Center for Systems Engineering at the Technion.

References

Balouka, N., Cohen, I. and Shtub, A. (2016) ‘Extending the multimode resource-constrained

project scheduling problem by including value considerations’, IEEE Transactions on Engineering

Management, 63(1), pp. 4–15.

Calafiore, G. and Campi, M. C. (2005) ‘Uncertain convex programs: Randomized solutions and

confidence levels’, Mathematical Programming, 102(1), pp. 25–46.

Kolisch, R. and Sprecher, A. (1997) ‘PSPLIB – A project scheduling problem library’, European

Journal of Operational Research, 96(1), pp. 205–216.

Oehmen (Ed.), J. (2012) The guide to lean enablers for managing engineering programs. Joint

MIT-PMI-INCOSE Community of Practice on Lean in Program Management.

Van Peteghem, V. and Vanhoucke, M. (2014) ‘An experimental investigation of metaheuristics for

the multi-mode resource-constrained project scheduling problem on new dataset instances’,

European Journal of Operational Research. North-Holland, 235(1), pp. 62–72.

Sutton, R. S. and Barto, A. G. (1998) Reinforcement learning: An introduction. MIT Press.

