
1

A column generation algorithm for the single machine

parallel batch scheduling problem

Onur Ozturk1

Telfer School of Management, University of Ottawa, 55 Laurier Avenue East, Ottawa, ON,
Canada K1N 6N5

oozturk@uottawa.ca

Keywords: Batch scheduling, dynamic programming, column generation, truncated solu-
tions

1 Introduction

Batch scheduling is the type of scheduling where jobs are grouped into batches and
processed together. In parallel batch scheduling (p-batch), jobs of the same batch are all
processed at the same time and in the same machine. In our problem, jobs have di�er-
ent release dates, rj , di�erent processing times, pj , and sizes, vj . Batches have a �xed
capacity B that sum of job sizes in a batch must not exceed. Once their composition is
determined, batches may also have di�erent processing times such that each batch must
be processed at least as long as the longest processing time of jobs included in that batch.
We aim to minimize the total �ow time, i.e.,

∑
Cj . Inspired from Graham's notation

((Graham, Lawler, Lenstra & Rinnooy Kan 1979)), our problem can be represented as
1/p−Batch, rj , pj , vj , B/

∑
Cj . Most solution methods for p-batch problems in the litera-

ture are metaheuristic methods ((Jia, Zhang, Long, Leung, Li & Li 2018)). In this study, we
develop a time indexed column generation model capable of �nding high quality solutions
within short computational times. Inspired from a 0-1 set partitioning model, each column
represents a set of jobs to be processed in the same batch at a given instant. At the end of
each iteration, we heuristically obtain primal solutions derived by iteratively rounding the
linear programming solution of the column generation model.

2 Set partitioning formulation for the Master Problem

The input of the problem is twofold: n jobs, indexed from 1 to n to be batched complying
with batch capacity and a total length T before which all batches must be processed at
an instant t such that 1 ≤ t ≤ T . Thus for each batch b with processing duration pb and
processing starting time t, time indices t′ ∈ {t, t+1, ..., t+ pb− 1} indicate the consecutive
discrete time instants during which batch b is processed. Let Setb ∈ {b1, b2, ..., bP } be the
set of all feasible job assignments and Cb the cost of processing batch b, i.e., the sum
of job completion times of batch b. Let ajb be equal to 1 if job j is assigned to batch b
(∀j ∈ {1, ..., n}), 0 otherwise. Also let atb be equal to 1 if batch b is being processed at
instant t (∀t ∈ {n + 1, ..., T}), 0 otherwise. Then we have the following conditions for a
feasible job assignment and batch processing:

∑n
j=1 ajbvj ≤ B, pb = max{ajb∗pk} (∀j ≤ n)

and
∑n+T

t=n+1 atb = pb. Let Cb be the cost of processing batch b, i.e., total �ow time of jobs
included in batch b. Cb is calculated as Cb =

∑n
j=1 ajb ∗ Cj where Cj = max{t ∗ atb}).

The decision to take is then if a batch b with a precise processing starting time should
be included in the solution. Hence, let the binary decision variable xb be equal to 1 if batch
(column) b is part of the solution and 0 otherwise (b = 1, ..., P ). We can model the master
problem as follows:



2

Min
∑P

b=1 xb ∗ Cb (1)

s.t. (2)P∑
b=1

ajb ∗ xb = 1 j = 1, .., n (3)

P∑
b=1

atb ∗ xb ≤ 1 t = n+ 1, .., n+ T (4)

xb ∈ {0, 1} ∀b = 1, ..., P (5)

In the MP model above, the objective function is the minimization of total �ow time.
The �rst constraint set assigns each job to a single batch. The second constraint set indi-
cates that a time instant can be occupied by the processing of at most one batch. We relax
the integrity condition for variable xb and solve the linear relaxation of the MP model by
column generation. The master problem is initiated with a restricted set of columns where
initial batches are generated with a heuristic regardless of job release dates and processing
times. This heuristic generates intervals of di�erent lengths covering iteratively 1, 2,..., n
jobs. Then jobs whose release dates fall into the same interval are batched together with the
�rst �t decreasing heuristic. Finally, batches are scheduled as if there is a single machine
to have a su�ciently large value for T .

3 Column generation for solving the sub-problem

The sub-problem aims to search for the column with the most negative reduced cost
and not currently included in the master problem. The sub-problem is an optimization
problem whose constraints are de�ned by the three fundamental dimensions of the original
problem: batch sizes cannot be greater than B, a batch cannot be processed before the
greatest release date of jobs included in that batch, batch processing time is given by the
longest processing time of jobs in the batch. The dual values of the master problem and
the cost of processing the new generated batch, i.e., new column, help to determine the
objective function of the sub-problem. The objective function is expressed as

∑n
j=1 Cj −

(
∑n

j=1 yj ∗ πj −
∑n+T

j=n+1 yj ∗ πj) where Cj is the completion time of job j in the column,
yj is the binary variable indicating if job j makes part of the column (∀j ∈ {1, ..., n}) and
if instant t is occupied by the processing of the column (∀j ∈ {n + 1, ..., T}), �nally πj is
the dual variable corresponding to constraint j in the master model (∀j ∈ {1, ..., T}). We
can present the sub-problem in the form of the following minimization problem:

Min
∑n

j=1 Cj − (
∑n

j=1 yj ∗ πj −
∑n+T

j=n+1 yj ∗ πj) (6)

s.t. (7)
n∑

j=1

yj ∗ vj ≤ B (8)

rb ≥ yj ∗ rj j = 1, .., n (9)

pb ≥ yj ∗ pj j = 1, .., n (10)

rb ≤ t+Q(1− yj) j = n+ 1, .., n+ T , t = j − n− 1 (11)

rb + pb − 1 ≥ yj ∗ t j = n+ 1, .., n+ T , t = j − n− 1 (12)

n+T∑
j=n+1

yj = pb (13)



3

Cj ≥ rb + pb −Q(1− yj) j = 1, .., T (14)

yj ∈ {0, 1}, Cj ≥ 0, rb ≥ 0, pb ≥ 0 (15)

Constraint 8 is the capacity constraint. Constraint sets 9 and 10 determine the starting
time, rb and the processing duration, pb, of the new generate batch b. Constraint sets 11,
12 and 13 ensure the continuity of the processing for pb units of time. Finally, constraint
set 14 sets the �ow time value for jobs in the batch.

Solving the sub-problem with the above model is time consuming. Thus, we developed
a pseudo-polynomial dynamic programming (DP) algorithm which solves the sub-problem
faster than the above integer model for the case of integer job sizes. The idea of the DP
algorithm is to decide what should be the length of the batch (i.e., processing duration) and
at which instant the batch should be processed. Then, jobs inducing the smallest reduced
cost can be found complying with the batch capacity. Hence, the DP algorithm is controlled
by four parameters: processing beginning instant t, processing duration pb, jobs in batch
j, capacity use noted cap. Let f(.) be a four dimensional array to enumerate recursively
the minimum reduced cost. We de�ne f(t, pb, j, cap) as the reduced cost of including job j
in a batch whose used capacity is cap with processing duration pb and processing starting
instant t. Initially we set f(t, pb, j, cap) to in�nity ∀t ∈ {0, ..., T}, pb ∈ {p1, ..., pn}, cap ∈
{0, ..., B}, j ∈ {1, ..., n}. Then, for each di�erent processing time pb and potential batch

processing instant t, we set f(t, pb, 0, varg(pj=pb)) = Carg(pj=pb)−πarg(pj=pb)+
∑n+t+pb−1

j=n+t πj
∀rarg(pj=pb) ≤ t. The interpretation of this calculation is the following: batch processing
time pb is computed for all di�erent job processing times as long as release date of the job
determining pb is available before (or at) batch processing instant t. The forth dimension
of function f(.) is then set to the size of the job determining pb. Then, for all other jobs
which are not currently in the batch, we recursively compute the minimal reduced cost
value: f(t, pb, j, cap) = min∀j′<j,cap′≤capf(t, pb, j

′, cap′) + t+ pb − πj
The smallest reduced cost is then equal to min∀t,pb,capf(t, pb, n, cap). There are n possi-

ble di�erent processing times for pb and the parameter t is bounded by T . For each di�erent
value of j, two for loops can be run for each of j′ and cap′ which are bounded by n and B,
respectively. Thus, the DP can be implemented in O(n3BT ) time.

4 Obtaining primal solutions

We implement a rounding technique similar to the one applied by (Mourgaya & Vanderbeck
2007). Primal solutions are obtained by truncating the relaxed solutions of the MP model.
After solving the linear relaxation of the initial MP by column generation, we lookup
columns/batches whose decision variable value is equal one, i.e., xb = 1. If there is such a
column, then it is registered as a validated batch. If there is no such column, then we select
the column having the largest xb value. (If there are multiple columns with the same xb
value, tie is broken by selecting the column with the smallest Cb value where Cb is the sum
of job completion times in batch b.) Then, that column is selected as a validated batch.
After validating a batch, jobs of that batch are erased from the original problem instance
and a residual problem is obtained. Afterwards, the same solution methodology is applied
to the residual problem until all jobs are batched.

Once all batches are obtained, it is now time to schedule them on the single machine.
The problem is equivalent to a single machine problem in the presence of jobs with di�erent
processing times, release dates and weights since batches can contain di�erent numbers of
jobs. Inspired from Graham's notation, it can be noted as 1/rj/

∑
wjCj which is also

an NP-hard problem ((Belouadah, Posner & Potts 1992)). However, this problem can be
e�ciently solved with a time indexed modeling as suggested by (Unlu & Mason 2010).



4

5 Numerical experimentation

We tested instances containing 10 to 50 jobs in the presence arbitrary release dates
generated in the following three ways: rj ∈ U [0, 5], rj ∈ U [0, 25] and rj ∈ U [0, 5 ∗ n]. Job
processing times were generated with pj ∈ U [1, 10] distribution and batch capacity B was
set to 5, 25 and 50 while integer job sizes were generated with a U[1, B/2] distribution.
For each combination of number of jobs, release date type and batch capacity, 5 problem
instances were generated and tested. We used CPLEX 12.8 for all numerical tests.

Table 1. Average optimality gaps

Cap = 5 Cap = 25 Cap = 50

Nbr jobs: 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

rj ∈ U [0, 5] 4.5 3.5 5.4 1.6 3.8 0.9 5 10.2 13 22.5 5.6 8.3 10.4 1.9 4.5

rj ∈ U [0, 25] 0.6 4.5 6.3 5.3 9.1 3.5 7.1 14.2 13.4 21 2.7 4.7 6.9 11.1 19.5

rj ∈ U [0, 5 ∗ n] 0 0.9 0.4 0.2 0 2.1 0.1 0.1 0.2 0.2 0 0.5 0.5 0 0

We compared the solution quality of our method to the solutions given by a straightfor-
ward mixed integer linear programming model of the problem where the solution time limit
is set to 1800 seconds. Table 1 shows the average optimality gaps of our solution method.
We see that the hardest instances are those with a large batch capacity in the presence
of medium release dates, i.e., rj ∈ U [0, 25]. Other than that the results are promising and
most of the time the optimality gap is close to zero when rj ∈ U [0, 5n]. Moreover, the
solution times with the column generation model are very small. The largest instances,
containing 50 jobs with a batch capacity of 25, are solved in the worst case within 400
seconds of CPU time.

6 Conclusion

We presented in this study a column generation solution method for the parallel batch
scheduling of jobs with di�erent release dates, processing times and sizes. Numerical tests
show that the proposed solution method is able to give high quality solutions within short
computational times. For future work, we aim to accelerate the sub-problem to decrease
the overall solution time of the algorithm.

References

Belouadah, H., Posner, M. E. & Potts, C. N. (1992), `Scheduling with release dates on a single ma-
chine to minimize total weighted completion time', Discrete applied mathematics 36(3), 213�
231.

Graham, R., Lawler, E., Lenstra, J. & Rinnooy Kan, A. (1979), `Optimization and approximation
in deterministic sequencing and scheduling: a survey', Annals of Discrete Mathematics 5, 287�
326.

Jia, Z.-h., Zhang, H., Long, W.-t., Leung, J. Y., Li, K. & Li, W. (2018), `A meta-heuristic for
minimizing total weighted �ow time on parallel batch machines', Computers & Industrial

Engineering 125, 298�308.
Mourgaya, M. & Vanderbeck, F. (2007), `Column generation based heuristic for tactical planning

in multi-period vehicle routing', European Journal of Operational Research 183(3), 1028�1041.
Unlu, Y. & Mason, S. J. (2010), `Evaluation of mixed integer programming formulations for

non-preemptive parallel machine scheduling problems', Computers & Industrial Engineering

58(4), 785�800.


