Computational Experiments for the Heuristic Solutions of the Two-
Stage Chain Reentrant Hybrid Flow Shop and Model Extensions

Lowell Lorenzo'

'Department of Industrial Engineering and Operations Research, University of the Philippines
Diliman 1101 Quezon City, Philippines
e-mail: Lowell.Lorenzo@up.edu.ph

Keywords: scheduling, reentrant hybrid flow shop, flexible job shop, heuristics.

1. Introduction

This is the second part of a research paper for the two-stage chain reentrant hybrid flow shop. In
the first part of the research paper which was presented in Lorenzo (2017), this problem was shown
to be strongly NP-hard. Lower bounds for the solution were derived and were used to develop
heuristic solutions for the problem. For this paper, we now explore the performance of these heuristic
solutions against the best derived lower bounds via computational experiments. Then, we develop
model extensions namely the reverse two-stage chain reentrant hybrid flow shop and the two-stage
flexible job shop with the corresponding heuristic solutions and computational experiments.

The outline of this paper is as follows. A short discussion of the definition of the problem and
the derived lower bounds are in Sections 2 and 3. Section 4 presents the base heuristic algorithms
and then the discussion on the results of the computational experiments is in Section 5. Finally,
model extensions of the problem, modified heuristic algorithms, solutions and computational
experiments are then presented in Sections 6-9.

2. Background and Problem Definition

Consider a simple flow shop with m stages. At every stage i,i=1,...,m, there is a single machine
M; available to process an operation of a job. Let ¢, be the stage visited to perform the kth operation
of a job where ¢ € {1,2,..,m}. Then ¢ = (¢1, P2, ..., ) = (1,2, ...,m) is the stage flow
sequence for all jobs and consists of m elements or operations. In a simple flow shop, the number of
operations a job undergoes is equal to the number of stages. In an m-stage chain reentrant flow shop,
its stage flow sequence ¢ = (1,2, ...,m, 1) has now (m+1) operations due to an occurrence of a
single reentrant operation. The single reentrant characteristic occurs in the (m+1)th operation which
is performed at stage 1 and is referred to as the finishing operation.

When there are m; identical parallel machines available in stage i, the resulting system is referred
to as a hybrid flow shop. Let this group of m; machines in stage i be referred to as work center WC;
in stage i.

In the two-stage chain reentrant flow shop, each job J;,j = 1, ..., n has a stage flow sequence ¢ =
(1,2,1). The processing time of the first operation of job J; is a;, its processing time in the second
operation is b; and the reentrant processing time for the finishing operation is ¢;. Let the processing
time vector for each job be (a;, bj, ¢;) or simply referred to now as the processing times of J; in the
two-stage chain reentrant flow shop. Since each job is processed in every operation in the chain
reentrant flow shop, then A = (ay,...,a,),B = (by, ..., by),C = (cy, ..., ¢cy) are the vectors of
processing times for each operation in ¢ respectively.

In the two-stage chain reentrant hybrid flow shop, there are two work centers WC; and W, with
m, and m, identical machines in parallel at stages 1 and 2 respectively. There are n jobs that have
to be processed and the completion time of J; occurs when the third or finishing operation at any of
the m, machines in WC, is completed. Let CRFy, ,, be a two-stage chain reentrant hybrid flow
shop where our objective is to find a schedule that minimizes the maximum completion time. Using
the three-tuple convention of defining scheduling problems proposed by Graham et al. (1979),
minimizing makespan in CRE,, , can be identified by F(my,m,)|chain reentrant|Cpqy for

which the optimal objective function value is CC*Rlemz'



The CREy, m, system is a general case of the two-stage chain reentrant flow shop studied by
Wang et al. (1997). In their paper, they study the makespan minimization of CRF; ; and derive a
Johnson based heuristic solution with complexity O(nlogn) and worst-case error bound of 3/2 is
derived. In Drobouchevitch and Strusevich (1999), another heuristic solution is presented for the
same problem with complexity O(nlogn) and an improved worst-case error bound of 4/3.

For the two-stage chain reentrant hybrid flow shop CRF,, ,,, we construct two auxiliary two-
stage flow shops. These two auxiliary two-stage ﬂow shops are AF1;,; and AF2;; with their

o
Car1,,and Capp, . The AFs just introduced help in the development of lower bounds and this is the
focus of the next section.

. L 1 . .
respective processing times (m— @, ]) and ( b; C]) and their corresponding makespans
1

3. Lower Bounds for Cigp
mq,my

Lower bounds for CC*Rlemz can be developed from the constructed auxiliary two-stage flow

shops described in the previous section. Since the proofs of these lower bounds were already
presented in Lorenzo (2017), these will not be shown here anymore.
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Lemma 1. Let LB, = max (CAFlm, CAF21,1'm_12;'1=1(a]' + cj)). Then LBy < Cegp,,, .-
Lemma 2. There is a permutation 1,2,...,n associated with an arbitrary schedule S such that for every
, . a; | b; 1 ki 1 i
1<i <n,thereisal < k; <isuchthat= Z] 1( o +m—2) < m—lzj=1a}- + m_zzi:kibl
Lemma 3. There is a permutation 1,2,...,n associated with an arbitrary schedule S such that for
every 1 <i <mn, there is a 1 < k; <i, such that Z, 1(a] + b; ) < —Z
1 i
m_22j=ki b]
Lemma 4. There is a permutation 1,2,...,n associated with an arbitrary schedule S such that for every
. . b; 1 @i
1<i <n,thereisal < k; <isuch that Z] 1( —) —Z m—ZZj-:ki b;.
Lemma 5. There is a permutation 1,2,...,n assomated with an arbitrary schedule S such that for every
1<i <n,thereisal < kisisuchthat Z] 1( +b) lzjlj Z]kb
Lemma 6. There is an optimal schedule S* for CRlem2 such that, for every 1 S kl <k, <n,
1 k 1 *
m—jZ,-;l a; + Z, kbt — Z] =k, G S CCRFymy -
Lemma 7. Let C 74, be the makespan derived by Johnson’s Algorithm (JA) for the auxiliary two-
stage flow shop problem with processing times (aj'- +b ) For any of the following set of values
of aj, bj and ¢j,

J’J

a; = jaj, b = —b]-, ¢ = ic]- or (1)
aj =m1:m aj, b =m prey bj, ¢ 1':]- or )
aj = m11+1 aj, b = mb], ¢ mGior (3)
e i e 1 —,; ‘. @

Cra, S CCrpymy
Let C;4, be the makespan derived by JA for the auxiliary two-stage flow shop problem with
processing times (bj” +cf’, a;'), For any of the following set of values of a;’, b;’, and ¢},

o D)

aj = mila]-, bj' = ibj' ¢' = Z—;llc]- or 5)
a = milaj, b’ = mlimz b, ¢f' = mlimz ¢ or 6)
a = iaj,b”- = ﬁbf' ' = — G or 7
a' = a,,b” — —bj, ¢ = mcj, ®)

Cra, < CeREpymy-



4. Heuristic Algorithms for F(mq, m,)|chain reentrant|C,,,,

Since makespan minimization in CRE;, n, is a general case of makespan minimization in CRF; 4,
then it is NP-hard as well. This motivates the development of heuristics that will enable in the
formulation of a solution to the problem. Towards this end, we also make the following observations.
The makespan of CREy, n, is attained in W(,, where the first and third operations are processed.
The following lemma establishes an optimal property for the scheduling of these operations in WC;.
Proofs of these lemmas and theorems have been presented in the paper of Lorenzo (2017) and will
therefore not be discussed.

Lemma 8. To minimize the makespan of CRFy,, m,, it is sufficient to consider a schedule wherein
all the first operations of all jobs always precede the third operations of all jobs in any of the m,
machines in WC;.

In the development of a chain reentrant flow shop heuristic, you first need a sequence to specify
the schedule of the jobs. Aside from the sequence you also need to assign each operation on the
available machines in the corresponding stage. To do the assignment of operations to machines, we
will utilize the first available machine (FAM) and last busy machine (LBM) rules. As the name
implies, the FAM rule assigns a job from a sequence based on the first machine that becomes
available. The LBM rule on the other hand is a mirror image of the FAM rule. Specifically, the
assignment of jobs to machines for example in the second operation using the LBM rule is as follows.

Given a constant T > 0 and a sequence S,

Step 1. Sett,, =T form =1, ...,m,.
Step 2. Let J; be the last unscheduled job in " and m = max;<p<m,{tm}. Schedule J; on machine
m such that it finishes at time t,,.
Step 3. Set tp, = ty, — b;. §' = 8" — {j}. If S = {@}, stop else go to step 2.
Three heuristics will now be presented for CRF,, 1, -
Heuristic H1

Let S; be the JA schedule for the AF with processing times (mi aj,mibj) and S, be the JA
1 2

schedule for the AF with processing times (mi b;, mi cj).
2 1

Step 1. Using the sequence Sy,
a. Apply FAM on A on the stage 1 machines.
b. Apply LBM on B on the stage 2 machines and schedule these tasks as early as possible. Let T’
be the largest completion time until the second operation.
c. Apply FAM on C on the stage 1 machines from T’ and schedule these tasks as early as possible.
d. Calculate the makespan, Cs, .
Step 2. Emulate Step 1 by using the sequence S, instead of S;. Replace A with C in step 1a, replace
C with A in step 1c and calculate the makespan, Cg, .
Step 3. The makespan of the heuristic is Cy; = min(CSl, CSz)'

* __ * i i — i =
Theorem 1. Let C* = Cggp,, ., then =2 < = (2 m), where m = max(my, m,).

Heuristic H2

In Heuristic H2, Step 1c of Heuristic H1 is replaced by an LBM procedure namely:
Step 1c: Apply LBM on C on the stage 1 machines from T’ = 5-‘=1(aj +b; + cj) and schedule
these tasks as early as possible.
Theorem 2. Let C* = Cgp,, ., then % < %(2 - %), where m = max(my, m,).

Heuristic H3

Heuristics H1 and H2 use two symmetric JA sequences derived from two of the three processing
times of the problem. With the lower bounds that have been derived in Lemma 7 based on the three
processing times of the problem, we can modify the heuristic's input to now use two symmetric JA
sequences based on all three processing times. In Lemma 7, the set of values (1), (2), (3) and (4) are
symmetric to (5), (6), (7) and (8) respectively.

Consider the two AF problems with processing times (a]’- + b}, ¢ ) and its symmetric pair
(b]-’ "+ a]’-’). Apply JA to these AF problems to obtain their corresponding schedule gy k=1,2.
Replace S; and S, with g; and o, in steps 1 and 2 respectively in H1.



We can use any of the following four pairs of three processing time JA schedules in H3. We
distinguish them by the following:

1. H3.1 when the pair of JA schedules is based on (1) and (5).

2. H3.2 when the pair of JA schedules is based on (2) and (6).

3. H3.3 when the pair of JA schedules is based on (3) and (7).

4. H3.4 when the pair of JA schedules is based on (4) and (8).

5. Computational Experiments for F(m,, m,)|chain reentrant|C,,,,

A computational experiment using various parameter values was conducted to assess the
performance of the heuristic algorithms H1 and H3. H1 uses a two processing time JA schedule
input while H3 uses a three processing time JA schedule. For each combination of values below, we
generated 10 problem instances using: number of jobs, n, number of machines in stage i, m; and the
processing times, a;, b; and ¢; which were randomly generated from U(l,u), which is a discrete
uniform distribution in [Lu]. The values considered for these parameters are shown in Table 1.

Table 1 shows the average deviation of the heuristic solution from the lower bound, LB; which
was established in Lemma 1. Since LB; dominates all the lower bounds established in Lemma 7, it
is used in the calculation of the average deviation. The average deviation AD is given by the formula,
AD = (C((H;) — LB;) * 100%/LB; where C(H;) is the makespan obtained in heuristic H;.

The following can be observed from the computational experiment.

1. The average deviation increases as m, increases. This can be explained by the behavior of the

lower bound LB,. Recall that LB; = max (CAF111: CAFZM,miZ;L:l(aj + Cj)) where Cypq,, is the
, ' my :

makespan from a JA schedule with processing times ( a,— bj) and Cyp, , is the makespan from
N :

1
my; ’m

a JA schedule with processing times (mi b;, mi Cj). When m; is small, the lower bound is dominated
2 1
by milzg-’:l(aj + Cj). As the value of m, increases, the lower bound now gets dominated by either

CAFlm or CAF2m~

2. The H3 heuristic generated a better solution than H1 based on the observed lower average
deviation. In all the problem cases, each variant of H3 yielded a lower average deviation versus H1.
Among the variants of the H3 heuristic, H3.3 generated the smallest overall average deviation of
0.81%. However, H3.3 did not generate the smallest average deviation per problem scenario.

3. From Table 1, we can see that as the number of jobs increases, the average deviation decreases.
When n = 40, the average deviation is 1.82% and when n = 80, it decreases to 0.89%. This can be
explained by the higher utilization of the machines in the work centers when there are more jobs.

4. As the variability of processing time increases, the average deviation in H3 also increases.
When the processing times are uniformly distributed in the interval [1,20], the average deviation is
0.78% and when the processing times are uniformly distributed in the interval [10,50] it increases to
1.24%. This cannot be extended for H1 as seen in Table 1.

Table 1: % Average Deviation from Lower Bound

n=20 aj.bj.c; ~ U(10.50) aj.bj,c; ~ U(1.20)

Hl H31 H32 H33 H34 | Hl H31 H32 H33 H34
m=2,mpy=6 049 0.09 015 016 0.18 | 028 008 008 0.08 0.08
mi=4,my=4 159 0.69 069 048 070 | l46 025 025 020 0.20
mi=6.mp=2 794 471 410 398 484 | 866 338 224 196 449
Average 334 183 led4 154 191 | 347 124 086 075 1.39
n =80
m=2,my=06 0.18 006 007 006 007 |027 002 002 002 002
m=4,m=4 1.0l 0.19 019 022 018 | .O3 010 010 010 0.10
m=6,m=2 404 199 185 189 232 |572 136 073 061 229
Average 175 075 070 072 086 | 234 049 028 024 0.0




6. Model Extensions

Consider the two-stage flexible job shop problem FJ(my, m;)|0 = 3|Cypqx Where 04, ...,0, = 3
is the number of operations of job J;. In this problem, there are two work centers W, and WC, with
m, and m, identical machines in parallel respectively. In the two-stage flexible job shop, each job
Jj can either start in WC; or WC, and must complete three operations wherein no two consecutive
operations are done on the same work center. There are thus two types of jobs, type 1 jobs which
start in WC; and type 2 jobs which start in WC,. There are n, type 1 jobs and n, type 2 jobs. Type
1 jobs are therefore processed in a CRFy, 4, System with processing times (aj, b;, cj) for operations
one, two and three respectively. Type 2 jobs have processing times (xj, yj,zj) for operations one,
two and three respectively wherein the X and z tasks are performed in W, and the y task is processed
inWC;. LetX = (xq, e, %), Y = V1, o, V), Z = (24, ..., Z,) be the vectors of processing times for
each operation of the type 2 jobs. Let us refer to this two-stage flexible job shop as FJy,, 1, where
our objective is to minimize makespan which is attained at Cg Jp Whereas the makespan of

CREp, m, 1s always attained in WC,, the makespan of F/, m, can either occur in WC; or WC,.
Lemma 8 established an optimal property of the arrangement of the first operations and third
operations of the type 1 jobs in WC; for CRFy,, m,. In Fiy, m,, the work centers WCy (W) aside
from processing the first operations and third operations of the type 1 (2) jobs also process the second
operations of the type 2 (1) jobs. The following lemma establishes an order between the three
operations of the jobs in an optimal solution.
Lemma 9. To minimize the makespan of FJp,, m,, it is sufficient to consider an optimal schedule
wherein all the A (X) tasks precede the B (Y) and the C (Z) tasks.
Proof: The proof is similar to Lemma 8.m

This lemma however does not establish the optimality of the precedence of a Y (B) task before a
C (2) task. Without loss of generality, consider WC; and WC, where each work center consists of
one machine. Consider also two identical type 1 jobs with processing times (0,0,1) and one type 2
job with processing times (3,2,0). The optimal solution is shown in Figure 1. The optimal solution
shows the C tasks precede the Y task. Making the Y task precede the C tasks will result to an increase
of the optimal makespan. Thus, we cannot establish the precedence of a second operation before a
third operation in an optimal solution.

Figure 1: Optimal Solution

we,

WCs

Although the previous lemma does not establish the optimality of the precedence of a second
operation before a third operation, we can utilize this property in the development of a heuristic
algorithm for this problem. But first, we develop some lower bounds for Cr Jp.

7. Lower Bounds For C},m1 sy

Type 1 jobs are symmetric to type 2 jobs because their stage flow sequence for each operation
and the number of machines at each stage are interchanged. Since type 1 jobs are processed in a
CREy, m, system, a symmetric system must likewise be defined for the type 2 jobs. Let RRE,,
be the reverse two-stage chain reentrant hybrid flow shop which is applicable for the type 2 jobs.
Since the type 2 jobs are processed first in WC,, the RRE,;, , system therefore has a stage flow



sequence ¢ = (2,1,2).

Consider RRE,, ,,, where the processing time vector for a job J; is (xj, yj,zj). Two auxiliary
two-stage flow shops AF3, ; and AF4, ; can be constructed with their respective processing times
(miz x]-,milyj) and (mil Vi mizzj). By applying JA to these auxiliary flow shops, their corresponding
makespans are Cyr3, , and Cypy, , . By appropriately substituting Cyrs, , and C4p4,, in Lemma 1, we
have max(Cars, ,, Cara,,) < CRRFyyy m,.(32)

Lemma 10. Let LB, = max (miZ};l(aj +y+¢), miZ};l(xj +b + Z]-)). Then LB, <
1 2

;]ml,mz'

3 1 1 1 1 n * 1
Proof: If the makespan is attained in WCy, then m_lzjzl(aj +y; + Cj) < CF]mllmzand if the
makespan is attained in WC,, then m%z;-‘ﬂ(xj +b; + Z]-) < C;]ml.mz'.

X x « x
Lemma 11. Cpgp, < C,,-]ml'mzand CeRFmymy S Clmpm,-
Proof: The proof is obvious.m
Consider again RRF, n, and the auxiliary two-stage flow shop now with processing times

(x]f +y},2 ). Let C; 4, be the makespan derived by JA for this AF. By appropriately substituting the

following set of values of xj, y; and zj in Lemma 7, we have Cja, < Cigp,,, . < Cippyy -
xj = ixj, yi= z%nlyf' zj = mizz]- or )
X = mlJlrmz X ) = mlimzyj' % = mizzj of (19)
X =Y = ey 7 = g, (12)

By symmetry, let Cj4, be the makespan derived by JA for the AF with processing times
(y}f "tz xjf').By appropriately substituting the following set of values of x;', ;" and z;" in Lemma
7, we have, Cj, < C}j,m.‘—mm1 < C;'lml,mz'

xj' = mizxj, yj' = 2_;11yj' zj' = ﬁ j or (13)
X' = mizxj, v = m141rm2 Vi zj' = mlimz z; or (14)
Y =Y = e sy g = g o (1)
R e = s D)

8. Heuristic Algorithms for FJ(m,,m;)|o = 3|C,ax

Since CRFy, m, and RRE,, . are special cases of the more general problem FJn, n,, the
heuristics H1 and H3 can be modified accordingly to solve it. Since it was observed that as the
number of jobs increased in CRFy, 4, , the performance of the heuristics H1 and H3 also improved.
With this insight, a modification of these heuristics can be constructed to solve Fy, m, -

Lemma 9 does not establish the precedence of the second operation before the third operation in
an optimal solution. However, in order to establish some structure in the heuristic, we will make the
second operation always precede the third operation. The following heuristic illustrates the use of
this property together with the optimal property stated in Lemma 9. The modified versions of H1
and H3 are now presented as Hla and H3a respectively.

Heuristic Hla

Let S; ;1 be the JA schedule for the AF with processing times (mi aj,mibj) and S;, be the JA
1 2
schedule for the AF with processing times (mi Xj, miy]-). Let S, ; be the JA schedule for the AF with
2 1
1y
ms

icj) and S,, be the JA schedule for the AF with processing times

rocessin; times( 0
p g i

(1 1Z)
mlyj'mz 1)



Step 1. Using the sequence S; ; for A, B and C and S, , for X, Y and Z:

a. Apply FAM on A and X in W(; and WC, respectively.

b. Apply LBM on B and Y in WC, and WC; respectively and schedule them as early as possible.

c. Apply FAM on C and Z in W(; and WC, respectively.

d. Calculate the makespan CSy.

Step 2. Emulate Step 1 by using the sequences S, ; and S, , instead of S; ; and S; , respectively.
Replace A with C and replace X with Z in step la. Replace C with A and Z with A in step 1c and
calculate the makespan, CSj,.

Step 3. The makespan of the heuristic Cy1, = min(CSf, CS,,).

Heuristic H3a

Similar to H3, consider the two AF problems with processing times (xj' + ¥ Zj') and its
symmetric pair (y]' "tz "). Apply JA to these AF problems to obtain their corresponding
schedule k, k = 1,2. Recall that in H3, g, and o, replaced S; and S, respectively in H1. Similarly,
replace Sy ; and S, , with o7 and g,respectively and S, ; and S, , with 7, and 7, respectively in H1a.

We can use any of the following four pairs of three processing time JA schedules in H3a. We
distinguish them by the following:

1. H3.1a when the two pairs of JA schedules are based on (1) and (5) for A, B and C and (9) and
(13) for X, Y and Z.

2. H3.2a when the two pairs of JA schedules are based on (2) and (6) for A, B and C and (10) and
(14) for X, Y and Z.

3. H3.3a when the two pairs of JA schedules are based on (3) and (7) for A, B and C and (11) and
(15) for X, Y and Z.

4. H3.4a when the two pairs of JA schedules are based on (4) and (8) for A, B and C and (12)
and (16) for X, Y and Z.

9. Computational Experiments for FJ(m;,m;)|0 = 3|Cp4x

Similarly as in Section 5, a computational experiment using various parameter values was
conducted to assess the performance of the heuristic algorithms Hla and H3a. Hla uses a two
processing time JA schedule input while H3a uses a three processing time JA schedule. For each
combination of values below, we generated 10 problem instances using: number of jobs, n, and n,,
number of machines in stage i,m; and the processing times, a;, b;, cj, x;,y; and z; which were
randomly generated from U(l,u), which is a discrete uniform distribution in [L,u]. The values of these
parameters are shown in Table 2.

Table 2 shows the average deviation of the heuristic solution from the lower bound, LB, which
was established in Lemma 10. From the computational experiments, we find that LB, dominates all
the lower bounds established for FJ,,, ;, and is thus used in the calculation of the average deviation
AD.

Since the utilization of the machines in the two work centers increases when processing both
types 1 and 2 jobs, it is expected that the average deviation of the heuristic solutions will improve
over the values seen in Table 1. This is validated by the results shown in Table 2. The following
additional observations can be made from the computational experiment.

1. The H3a heuristic generates a better solution than Hla based on the observed lower average
deviation. The average deviation for H3a was 0.21% while it was 0.96% for H1a. In all the problem
cases, each variant of H3a yielded a lower average deviation versus Hla. Among the variants of the
H3a heuristic, H3.3a generated the smallest overall average deviation of 0.18%. However, H3.3a
did not generate the smallest average deviation per problem scenario.

2. As the number of jobs increases, the average deviation decreases. When n = 40, the average
deviation of Hla is 1.27% and it decreases to 0.65% when n = 80. For H3a, the average deviation is
0.30% when n = 40 and it decreases to 0.11% when n = 80. This can be explained by the higher
utilization of the machines in the work centers when there are more jobs.

3. As the variability of processing times increases, the average deviations in H3a also increase.
This is observed when the average deviation of 0.15% for the interval [1,20] increases to 0.27% for
the interval [10,50].



Table 2 % Averape Deviation from Lower Boand

aj, by, o, x5 y5,2 ~ UCLI050) aj, by, o x5 ¥,z ~ UCL20)

I

Hla H3la H32a H3i3a Hida | Hla H3ila H32a H33a Hida

nm = l0n =3

my=2, my=6 (.52 043 0.50 0.25 052 088 022 026 0.23 046
m=4, mp=4 201 0.5l 0.51 0.60 042 6 027 027 0.28 0.34
m=6, mp=2 (.62 020 0.15 01l 0.25 042 006 0.06 0.06 0.06

Average 105 038 0.39 0.32 040 1.3 @18 020 0.19 0.28

m =M n=3

m=2, my=6 037 010 0.21 019 019 079 oIl 01l 0.11 014
m=4, my=4 1098 093 0.93 Mol 083 151 041 041 0.41 0.47
m=6, my=2 061 013 0.14 012 0.25 Lor @il 015 0.11 01l

Average .32 0.39 0.43 031 043 L7702l 022 0.21 0.24

m=Mn=1

m=2, my=6 (.44 0OI8 013 0.08 022 084 006 0.06 0.06 0.06
m=4, my=4 L&3 046 (.46 0.63 64 235 035 0.25 0.31 0.25
mi=6. mp=2 (.67 035 (.50 0.26 Q.67 038 030 0.59 0.15 0.52

Average 091 033 0.36 033 051 1.19 020 030 0.17 0.28

m=Mn=5

m=2, my=th 0.32 010 0.10 0.08 0.08 0.26 006 0.06 0.06 0.06
m=4, my=4 Ll6 0213 0.23 0.32 0.29 L1115 015 0.12 012
m=6, mp=2 0.23 007 0.04 0.14 005 034 004 0.04 0.04 004

Average 057 013 0.12 0.18 014 057 008 008 0.08 0.08

n =40, =4

m=2, my=6 (.28 0.08 0.07 0.05 014 026 002 002 0.02 0.02
m=4, my=4 143 037 0.37 0.36 0.29 L4101 @13 013 0.16 013
m=f, mp=2 (.20 008 0.07 0.10 013 039 006 0.06 0.06 0.06

Average 0.66 018 0.17 0.17 019 0.69 007 0.07 0.08 0.7

np = 5,n =3

m=2, mp=6 030 0.1l 0.07 0.07 003 031 002 002 0.02 0.02
mi=4, mz=4 124 0.21 0.21 0.21 041 1.55 (0B 0.08 0.05 011
m=h, mp=2 (.31 0.0 0.00 013 019 055 007 007 0.07 0.07

Average 0.62 014 0.13 0.14 0.22 080 0,06 0.06 0.05 0.07

10. Conclusion

This paper evaluated the performance of the heuristic solutions developed by Lorenzo (2017)
for the F(mq, my)|chain reentrant|Cp,, problem against the best established lower bound
through computational experiments. The results showed that the heuristic solutions gave very good
approximations to the optimal solution. The CRFy, n,,model is then extended to include features of
the RRFy,, ;n, model which leads to the formulation of the FJy,, ;n, model. The previous heuristic
solutions and lower bounds developed for the CRFy ,,, model are then modified for the
FJ(my,m;)|0 = 3|Cppax problem and the computational experiments again yield very good
approximations to the optimal solution. Future research shall be directed towards the improvement
of the heuristic solutions for CRF;, ,,, which may yield better worst-case error bounds.
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