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1. Introduction 

This is the second part of a research paper for the two-stage chain reentrant hybrid flow shop. In 
the first part of the research paper which was presented in Lorenzo (2017), this problem was shown 
to be strongly NP-hard. Lower bounds for the solution were derived and were used to develop 
heuristic solutions for the problem. For this paper, we now explore the performance of these heuristic 
solutions against the best derived lower bounds via computational experiments. Then, we develop 
model extensions namely the reverse two-stage chain reentrant hybrid flow shop and the two-stage 
flexible job shop with the corresponding heuristic solutions and computational experiments. 

The outline of this paper is as follows.  A short discussion of the definition of the problem and 
the derived lower bounds are in Sections 2 and 3.  Section 4 presents the base heuristic algorithms 
and then the discussion on the results of the computational experiments is in Section 5.  Finally, 
model extensions of the problem, modified heuristic algorithms, solutions and computational 
experiments are then presented in Sections 6-9. 

2. Background and Problem Definition 

Consider a simple flow shop with m stages. At every stage i,i=1,…,m, there is a single machine 
𝑀௜ available to process an operation of a job. Let 𝜙௞ be the stage visited to perform the kth operation 
of a job where 𝜙௞ ∈ ሼ1,2, … , 𝑚ሽ. Then 𝜙 ൌ ሺ𝜙ଵ, 𝜙ଶ, … , 𝜙௠ሻ ൌ ሺ1,2, … , 𝑚ሻ is the stage flow 
sequence for all jobs and consists of m elements or operations. In a simple flow shop, the number of 
operations a job undergoes is equal to the number of stages. In an m-stage chain reentrant flow shop, 
its stage flow sequence 𝜙 ൌ ሺ1,2, … , 𝑚, 1ሻ has now (m+1) operations due to an occurrence of a 
single reentrant operation. The single reentrant characteristic occurs in the (m+1)th operation which 
is performed at stage 1 and is referred to as the finishing operation. 

When there are 𝑚௜ identical parallel machines available in stage i, the resulting system is referred 
to as a hybrid flow shop. Let this group of 𝑚௜ machines in stage i be referred to as work center 𝑊𝐶௜ 
in stage i. 

In the two-stage chain reentrant flow shop, each job 𝐽௝, 𝑗 ൌ 1, … , 𝑛 has a stage flow sequence 𝜙 ൌ
ሺ1,2,1ሻ. The processing time of the first operation of job 𝐽௝ is 𝑎௝, its processing time in the second 
operation is 𝑏௝ and the reentrant processing time for the finishing operation is 𝑐௝. Let the processing 
time vector for each job be ሺ𝑎௝, 𝑏௝, 𝑐௝ሻ or simply referred to now as the processing times of 𝐽௝ in the 
two-stage chain reentrant flow shop. Since each job is processed in every operation in the chain 
reentrant flow shop, then 𝐴 ൌ ሺ𝑎ଵ, … , 𝑎௡ሻ, 𝐵 ൌ ሺ𝑏ଵ, … , 𝑏௡ሻ, 𝐶 ൌ ሺ𝑐ଵ, … , 𝑐௡ሻ are the vectors of 
processing times for each operation in 𝜙 respectively. 

In the two-stage chain reentrant hybrid flow shop, there are two work centers 𝑊𝐶ଵ and 𝑊𝐶ଶ with 
𝑚ଵ and 𝑚ଶ identical machines in parallel at stages  and  respectively. There are n jobs that have 
to be processed and the completion time of 𝐽௝ occurs when the third or finishing operation at any of 
the 𝑚ଵ machines in 𝑊𝐶ଵ is completed. Let 𝐶𝑅𝐹௠భ,௠మ

 be a two-stage chain reentrant hybrid flow 
shop where our objective is to find a schedule that minimizes the maximum completion time. Using 
the three-tuple convention of defining scheduling problems proposed by Graham et al. (1979), 
minimizing makespan in 𝐶𝑅𝐹௠భ,௠మ

 can be identified by 𝐹ሺ𝑚ଵ, 𝑚ଶሻ|𝑐ℎ𝑎𝑖𝑛 𝑟𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡|𝐶௠௔௫ for 

which the optimal objective function value is 𝐶஼ோி೘భ,೘మ

∗ . 



The 𝐶𝑅𝐹௠భ,௠మ
 system is a general case of the two-stage chain reentrant flow shop studied by 

Wang et al. (1997). In their paper, they study the makespan minimization of 𝐶𝑅𝐹ଵ,ଵ and derive a 
Johnson based heuristic solution with complexity O(nlogn) and worst-case error bound of 3 2⁄  is 
derived. In Drobouchevitch and Strusevich (1999), another heuristic solution is presented for the 
same problem with complexity O(nlogn) and an improved worst-case error bound of 4 3⁄ . 

For the two-stage chain reentrant hybrid flow shop 𝐶𝑅𝐹௠భ,௠మ
, we construct two auxiliary two-

stage flow shops. These two auxiliary two-stage flow shops are 𝐴𝐹1ଵ,ଵ and 𝐴𝐹2ଵ,ଵ with their 

respective processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and ቀ

ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ and their corresponding makespans 

𝐶஺ிଵభ,భ
and 𝐶஺ிଶభ,భ

. The AFs just introduced help in the development of lower bounds and this is the 
focus of the next section. 

3. Lower Bounds for 𝑪𝑪𝑹𝑭𝒎𝟏,𝒎𝟐

∗  

Lower bounds for 𝐶஼ோி೘భ,೘మ

∗  can be developed from the constructed auxiliary two-stage flow 

shops described in the previous section. Since the proofs of these lower bounds were already 
presented in Lorenzo (2017), these will not be shown here anymore. 

Lemma 1. Let 𝐿𝐵ଵ ൌ 𝑚𝑎𝑥 ቀ𝐶஺ிଵభ,భ
, 𝐶஺ிଶభ,భ

,
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑐௝൯௡

௝ୀଵ ቁ. Then 𝐿𝐵ଵ ൑ 𝐶஼ோி೘భ,೘మ

∗ . 

Lemma 2. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for every 

1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑  𝑘௜ ൑ 𝑖 such that 
ଵ

ଶ
∑ ቀ

௔ೕ

௠భ
൅

௕ೕ

௠మ
ቁ௜

௝ୀଵ  ൑  ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅  ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

. 

Lemma 3. There is a permutation 1,2,…,n  associated with an arbitrary schedule S such that for 

every 1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑  𝑘௜ ൑ 𝑖,  such that 
ଵ

௠భା௠మ
∑ ൫𝑎௝ ൅ 𝑏௝൯௜

௝ୀଵ  ൑  
ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅

 
ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

. 

Lemma 4. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for every 

1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑  𝑘௜ ൑ 𝑖 such that 
ଵ

௠భାଵ
∑ ቀ𝑎௝ ൅

௕ೕ

௠మ
ቁ௜

௝ୀଵ  ൑  
ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅  

ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

. 

Lemma 5. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for every 

1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑  𝑘௜ ൑ 𝑖 such that 
ଵ

௠మାଵ
∑ ቀ

௔ೕ

௠భ
൅ 𝑏௝ቁ௜

௝ୀଵ  ൑  ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅  ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

. 

Lemma 6. There is an optimal schedule 𝑆∗ for 𝐶𝑅𝐹௠భ,௠మ
 such that, for every 1 ൑  𝑘ଵ ൑ 𝑘ଶ ൑ 𝑛, 

ଵ

௠భ
∑ 𝑎௝

௞భ
௝ୀଵ ൅  ଵ

௠మ
∑ 𝑏௝

௞మ
௝ୀ௞భ

൅ ଵ

௠భ
∑ 𝑐௝

௡
௝ୀ௞మ

 ൑  𝐶஼ோி೘భ,೘మ

∗ . 

Lemma 7. Let 𝐶௃஺భ
 be the makespan derived by Johnson’s Algorithm (JA) for the auxiliary two-

stage flow shop problem with processing times ൫𝑎௝
ᇱ ൅ 𝑏௝

ᇱ, 𝑐௝
ᇱ൯. For any of the following set of values 

of 𝑎௝
ᇱ, 𝑏௝

ᇱ and 𝑐௝
ᇱ, 

 

𝑎௝
ᇱ ൌ ଵ

ଶ௠భ
𝑎௝, 𝑏௝

ᇱ ൌ ଵ

ଶ௠మ
𝑏௝, 𝑐௝

ᇱ ൌ ଵ

௠భ
𝑐௝  or (1) 

𝑎௝
ᇱ ൌ

ଵ

௠భା௠మ
𝑎௝, 𝑏௝

ᇱ ൌ
ଵ

௠భା௠మ
𝑏௝, 𝑐௝

ᇱ ൌ
ଵ

௠భ
𝑐௝  or (2) 

𝑎௝
ᇱ ൌ

ଵ

௠భାଵ
𝑎௝, 𝑏௝

ᇱ ൌ
ଵ

௠మሺ௠భାଵሻ
𝑏௝, 𝑐௝

ᇱ ൌ
ଵ

௠భ
𝑐௝  or (3) 

𝑎௝
ᇱ ൌ

ଵ

 ௠భሺ௠మାଵሻ
𝑎௝, 𝑏௝

ᇱ ൌ
ଵ

௠మାଵ
𝑏௝, 𝑐௝

ᇱ ൌ
ଵ

௠భ
𝑐௝,   (4) 

    𝐶௃஺భ
 ൑  𝐶஼ோி೘భ,೘మ

∗ . 

Let 𝐶௃஺మ
 be the makespan derived by JA for the auxiliary two-stage flow shop problem with 

processing times ൫𝑏௝
ᇱᇱ ൅ 𝑐௝

ᇱᇱ, 𝑎௝
ᇱᇱ൯, For any of the following set of values of 𝑎௝

ᇱᇱ, 𝑏௝
ᇱᇱ, and 𝑐௝

ᇱᇱ, 

𝑎௝
ᇱᇱ ൌ ଵ

௠భ
𝑎௝, 𝑏௝

ᇱᇱ ൌ ଵ

ଶ௠మ
𝑏௝, 𝑐௝

ᇱᇱ ൌ ଵ

ଶ௠భ
𝑐௝  or (5) 

𝑎௝
ᇱᇱ ൌ

ଵ

௠భ
𝑎௝, 𝑏௝

ᇱᇱ ൌ
ଵ

௠భା௠మ
𝑏௝, 𝑐௝

ᇱᇱ ൌ
ଵ

௠భା௠మ
𝑐௝  or (6) 

𝑎௝
ᇱᇱ ൌ

ଵ

௠భ
𝑎௝, 𝑏′௝

ᇱ ൌ
ଵ

௠మሺ௠భାଵሻ
𝑏௝, 𝑐௝

ᇱᇱ ൌ
ଵ

௠భାଵ
𝑐௝  or (7) 

𝑎௝
ᇱᇱ ൌ

ଵ

௠భ
𝑎௝, 𝑏′௝

ᇱ ൌ
ଵ

௠మାଵ
𝑏௝, 𝑐௝

ᇱᇱ ൌ
ଵ

௠భሺ௠మାଵሻ
𝑐௝,   (8) 

    𝐶௃஺మ
 ൑  𝐶஼ோி೘భ,೘మ

∗ . 



4. Heuristic Algorithms for 𝑭ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒄𝒉𝒂𝒊𝒏 𝒓𝒆𝒆𝒏𝒕𝒓𝒂𝒏𝒕|𝑪𝒎𝒂𝒙 

Since makespan minimization in 𝐶𝑅𝐹௠భ,௠మ
 is a general case of makespan minimization in 𝐶𝑅𝐹ଵ,ଵ, 

then it is NP-hard as well. This motivates the development of heuristics that will enable in the 
formulation of a solution to the problem. Towards this end, we also make the following observations. 
The makespan of 𝐶𝑅𝐹௠భ,௠మ

 is attained in 𝑊𝐶ଵ, where the first and third operations are processed.  
The following lemma establishes an optimal property for the scheduling of these operations in 𝑊𝐶ଵ.  
Proofs of these lemmas and theorems have been presented in the paper of Lorenzo (2017) and will 
therefore not be discussed. 
Lemma 8. To minimize the makespan of 𝐶𝑅𝐹௠భ,௠మ

, it is sufficient to consider a schedule wherein 
all the first operations of all jobs always precede the third operations of all jobs in any of the 𝑚ଵ 
machines in 𝑊𝐶ଵ. 

In the development of a chain reentrant flow shop heuristic, you first need a sequence to specify 
the schedule of the jobs. Aside from the sequence you also need to assign each operation on the 
available machines in the corresponding stage. To do the assignment of operations to machines, we 
will utilize the first available machine (FAM) and last busy machine (LBM) rules. As the name 
implies, the FAM rule assigns a job from a sequence based on the first machine that becomes 
available. The LBM rule on the other hand is a mirror image of the FAM rule. Specifically, the 
assignment of jobs to machines for example in the second operation using the LBM rule is as follows. 

Given a constant 𝑇 ൐ 0 and a sequence 𝑆ᇱ, 
Step 1. Set 𝑡௠ ൌ 𝑇 for 𝑚 ൌ 1, … , 𝑚ଶ. 
Step 2. Let 𝐽௝ be the last unscheduled job in 𝑆ᇱ and 𝑚 ൌ 𝑚𝑎𝑥ଵஸ௠ஸ௠మ

ሼ𝑡௠ሽ. Schedule 𝐽௝ on machine 
m such that it finishes at time 𝑡௠. 
Step 3. Set 𝑡௠ ൌ 𝑡௠ െ 𝑏௝. 𝑆ᇱ ൌ 𝑆ᇱ െ ሼ𝑗ሽ. If 𝑆ᇱ ൌ ሼ∅ሽ, stop else go to step 2. 

Three heuristics will now be presented for 𝐶𝑅𝐹௠భ,௠మ
. 

Heuristic H1 

Let 𝑆ଵ be the JA schedule for the AF with processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and 𝑆ଶ be the JA 

schedule for the AF with processing times ቀ
ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ. 

Step 1. Using the sequence 𝑆ଵ, 
a. Apply FAM on A on the stage 1 machines. 
b. Apply LBM on B on the stage 2 machines and schedule these tasks as early as possible. Let 𝑇ᇱ 

be the largest completion time until the second operation. 
c. Apply FAM on C on the stage 1 machines from 𝑇ᇱ and schedule these tasks as early as possible. 
d. Calculate the makespan, 𝐶ௌభ

. 
Step 2. Emulate Step 1 by using the sequence 𝑆ଶ instead of 𝑆ଵ. Replace A with C in step 1a, replace 
C with A in step 1c and calculate the makespan, 𝐶ௌమ

. 

Step 3. The makespan of the heuristic is 𝐶ுଵ ൌ 𝑚𝑖𝑛൫𝐶ௌభ
, 𝐶ௌమ

൯. 

Theorem 1. Let 𝐶∗ ൌ  𝐶஼ோி೘భ,೘మ

∗ , then 
஼ಹభ

஼∗ ൑
ଷ

ଶ
ቀ2 െ

ଵ

௠
ቁ, where 𝑚 ൌ 𝑚𝑎𝑥ሺ𝑚ଵ, 𝑚ଶሻ. 

Heuristic H2 
In Heuristic H2, Step 1c of Heuristic H1 is replaced by an LBM procedure namely: 

Step 1c: Apply LBM on C on the stage 1 machines from 𝑇ᇱ ൌ  ∑ ൫𝑎௝ ൅ 𝑏௝ ൅ 𝑐௝൯௡
௝ୀଵ  and schedule 

these tasks as early as possible. 

Theorem 2. Let 𝐶∗ ൌ  𝐶஼ோி೘భ,೘మ

∗ , then 
஼ಹమ

஼∗ ൑
ଷ

ଶ
ቀ2 െ

ଵ

௠
ቁ, where 𝑚 ൌ 𝑚𝑎𝑥ሺ𝑚ଵ, 𝑚ଶሻ. 

Heuristic H3 
Heuristics H1 and H2 use two symmetric JA sequences derived from two of the three processing 

times of the problem. With the lower bounds that have been derived in Lemma 7 based on the three 
processing times of the problem, we can modify the heuristic's input to now use two symmetric JA 
sequences based on all three processing times.  In Lemma 7, the set of values (1), (2), (3) and (4) are 
symmetric to (5), (6), (7) and (8) respectively. 

Consider the two AF problems with processing times ൫𝑎௝
ᇱ ൅ 𝑏௝

ᇱ, 𝑐௝
ᇱ൯ and its symmetric pair 

൫𝑏௝
ᇱᇱ ൅ 𝑐௝

ᇱᇱ, 𝑎௝
ᇱᇱ൯. Apply JA to these AF problems to obtain their corresponding schedule 𝜎௞ k=1,2. 

Replace 𝑆ଵ and 𝑆ଶ with 𝜎ଵ and 𝜎ଶ in steps 1 and 2 respectively in H1. 



We can use any of the following four pairs of three processing time JA schedules in H3. We 
distinguish them by the following: 

1. H3.1 when the pair of JA schedules is based on (1) and (5). 
2. H3.2 when the pair of JA schedules is based on (2) and (6). 
3. H3.3 when the pair of JA schedules is based on (3) and (7). 
4. H3.4 when the pair of JA schedules is based on (4) and (8). 

5. Computational Experiments for 𝑭ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒄𝒉𝒂𝒊𝒏 𝒓𝒆𝒆𝒏𝒕𝒓𝒂𝒏𝒕|𝑪𝒎𝒂𝒙 

A computational experiment using various parameter values was conducted to assess the 
performance of the heuristic algorithms H1 and H3. H1 uses a two processing time JA schedule 
input while H3 uses a three processing time JA schedule. For each combination of values below, we 
generated 10 problem instances using: number of jobs, n, number of machines in stage i, 𝑚௜ and the 
processing times, 𝑎௝, 𝑏௝ and 𝑐௝ which were randomly generated from U(l,u), which is a discrete 
uniform distribution in [l,u]. The values considered for these parameters are shown in Table 1. 

Table 1 shows the average deviation of the heuristic solution from the lower bound, 𝐿𝐵ଵ which 
was established in Lemma 1. Since 𝐿𝐵ଵ dominates all the lower bounds established in Lemma 7, it 
is used in the calculation of the average deviation. The average deviation AD is given by the formula, 
𝐴𝐷 ൌ ሺ𝐶ሺሺ𝐻௜ሻ െ 𝐿𝐵ଵሻ ∗ 100%/𝐿𝐵ଵ where 𝐶ሺ𝐻௜ሻ is the makespan obtained in heuristic 𝐻௜. 

The following can be observed from the computational experiment. 
1. The average deviation increases as 𝑚ଵ increases. This can be explained by the behavior of the 

lower bound 𝐿𝐵ଵ. Recall that 𝐿𝐵ଵ ൌ 𝑚𝑎𝑥 ቀ𝐶஺ிଵభ,భ
, 𝐶஺ிଶభ,భ

,
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑐௝൯௡

௝ୀଵ ቁ where 𝐶஺ிଵభ,భ
 is the 

makespan from a JA schedule with processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and 𝐶஺ிଶభ,భ

 is the makespan from 

a JA schedule with processing times ቀ
ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ. When 𝑚ଵ is small, the lower bound is dominated 

by 
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑐௝൯௡

௝ୀଵ . As the value of 𝑚ଵ increases, the lower bound now gets dominated by either 

𝐶஺ிଵభ,భ
 or 𝐶஺ிଶభ,భ

. 

2. The H3 heuristic generated a better solution than H1 based on the observed lower average 
deviation. In all the problem cases, each variant of H3 yielded a lower average deviation versus H1. 
Among the variants of the H3 heuristic, H3.3 generated the smallest overall average deviation of 
0.81%. However, H3.3 did not generate the smallest average deviation per problem scenario. 

3. From Table 1, we can see that as the number of jobs increases, the average deviation decreases. 
When n = 40, the average deviation is 1.82% and when n = 80, it decreases to 0.89%. This can be 
explained by the higher utilization of the machines in the work centers when there are more jobs. 

4. As the variability of processing time increases, the average deviation in H3 also increases. 
When the processing times are uniformly distributed in the interval [1,20], the average deviation is 
0.78% and when the processing times are uniformly distributed in the interval [10,50] it increases to 
1.24%. This cannot be extended for H1 as seen in Table 1. 

 



6. Model Extensions 

Consider the two-stage flexible job shop problem 𝐹𝐽ሺ𝑚ଵ, 𝑚ଶሻ|𝑜 ൌ 3|𝐶௠௔௫ where 𝑜ଵ, … , 𝑜௡ ൌ 3 
is the number of operations of job 𝐽௝. In this problem, there are two work centers 𝑊𝐶ଵ and 𝑊𝐶ଶ with 
𝑚ଵ and 𝑚ଶ identical machines in parallel respectively. In the two-stage flexible job shop, each job 
𝐽௝ can either start in 𝑊𝐶ଵ or 𝑊𝐶ଶ and must complete three operations wherein no two consecutive 
operations are done on the same work center. There are thus two types of jobs, type 1 jobs which 
start in 𝑊𝐶ଵ and type 2 jobs which start in 𝑊𝐶ଶ. There are 𝑛ଵ type 1 jobs and 𝑛ଶ type 2 jobs. Type 
1 jobs are therefore processed in a 𝐶𝑅𝐹௠భ,௠మ

system with processing times ൫𝑎௝, 𝑏௝, 𝑐௝൯ for operations 

one, two and three respectively. Type 2 jobs have processing times ൫𝑥௝, 𝑦௝, 𝑧௝൯ for operations one, 
two and three respectively wherein the x and z tasks are performed in 𝑊𝐶ଶ and the y task is processed 
in 𝑊𝐶ଵ. Let 𝑋 ൌ ሺ𝑥ଵ, … , 𝑥௡ሻ, 𝑌 ൌ ሺ𝑦ଵ, … , 𝑦௡ሻ, 𝑍 ൌ ሺ𝑧ଵ, … , 𝑧௡ሻ be the vectors of processing times for 
each operation of the type 2 jobs. Let us refer to this two-stage flexible job shop as 𝐹𝐽௠భ,௠మ

 where 
our objective is to minimize makespan which is attained at 𝐶ி௃೘భ,೘మ

∗ . Whereas the makespan of 

𝐶𝑅𝐹௠భ,௠మ
 is always attained in 𝑊𝐶ଵ, the makespan of 𝐹𝐽௠భ,௠మ

 can either occur in 𝑊𝐶ଵ or 𝑊𝐶ଶ. 
Lemma 8 established an optimal property of the arrangement of the first operations and third 
operations of the type 1 jobs in 𝑊𝐶ଵ for 𝐶𝑅𝐹௠భ,௠మ

. In 𝐹𝐽௠భ,௠మ
, the work centers 𝑊𝐶ଵ ሺ𝑊𝐶ଶሻ aside 

from processing the first operations and third operations of the type 1 (2) jobs also process the second 
operations of the type 2 (1) jobs. The following lemma establishes an order between the three 
operations of the jobs in an optimal solution. 
Lemma 9. To minimize the makespan of 𝐹𝐽௠భ,௠మ

, it is sufficient to consider an optimal schedule 
wherein all the A (X) tasks precede the B (Y) and the C (Z) tasks. 
Proof: The proof is similar to Lemma 8.∎  

This lemma however does not establish the optimality of the precedence of a Y (B) task before a 
C (Z) task. Without loss of generality, consider 𝑊𝐶ଵ and 𝑊𝐶ଶ where each work center consists of 
one machine. Consider also two identical type 1 jobs with processing times (0,0,1) and one type 2 
job with processing times (3,2,0). The optimal solution is shown in Figure 1. The optimal solution 
shows the C tasks precede the Y task. Making the Y task precede the C tasks will result to an increase 
of the optimal makespan. Thus, we cannot establish the precedence of a second operation before a 
third operation in an optimal solution. 

 
Although the previous lemma does not establish the optimality of the precedence of a second 

operation before a third operation, we can utilize this property in the development of a heuristic 
algorithm for this problem. But first, we develop some lower bounds for 𝐶ி௃೘భ,೘మ

∗ .  

7. Lower Bounds For 𝑪𝑭𝑱𝒎𝟏,𝒎𝟐

∗  

Type 1 jobs are symmetric to type 2 jobs because their stage flow sequence for each operation 
and the number of machines at each stage are interchanged. Since type 1 jobs are processed in a 
𝐶𝑅𝐹௠భ,௠మ

 system, a symmetric system must likewise be defined for the type 2 jobs. Let 𝑅𝑅𝐹௠మ,௠భ
 

be the reverse two-stage chain reentrant hybrid flow shop which is applicable for the type 2 jobs. 
Since the type 2 jobs are processed first in 𝑊𝐶ଶ, the 𝑅𝑅𝐹௠మ,௠భ

 system therefore has a stage flow 



sequence 𝜙 ൌ ሺ2,1,2ሻ. 
Consider 𝑅𝑅𝐹௠మ,௠భ

 where the processing time vector for a job 𝐽௝ is ൫𝑥௝, 𝑦௝, 𝑧௝൯. Two auxiliary 
two-stage flow shops 𝐴𝐹3ଵ,ଵ and 𝐴𝐹4ଵ,ଵ can be constructed with their respective processing times 

ቀ
ଵ

௠మ
𝑥௝,

ଵ

௠భ
𝑦௝ቁ and ቀ

ଵ

௠భ
𝑦௝,

ଵ

௠మ
𝑧௝ቁ. By applying JA to these auxiliary flow shops, their corresponding 

makespans are 𝐶஺ிଷభ,భ
 and 𝐶஺ிସభ,భ

. By appropriately substituting 𝐶஺ிଷభ,భ
 and 𝐶஺ிସభ,భ

 in Lemma 1, we 

have 𝑚𝑎𝑥൫𝐶஺ிଷభ,భ
, 𝐶஺ிସభ,భ

൯ ൑ 𝐶ோோி೘మ,೘భ.
∗ ሺ32ሻ 

Lemma 10. Let 𝐿𝐵ଶ ൌ 𝑚𝑎𝑥 ቀ
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑦௝ ൅ 𝑐௝൯௡

௝ୀଵ ,
ଵ

௠మ
∑ ൫𝑥௝ ൅ 𝑏௝ ൅ 𝑧௝൯௡

௝ୀଵ ቁ. Then 𝐿𝐵ଶ ൑

𝐶ி௃೘భ,೘మ

∗ .  

Proof: If the makespan is attained in 𝑊𝐶ଵ, then 
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑦௝ ൅ 𝑐௝൯௡

௝ୀଵ  ൑  𝐶ி௃೘భ,೘మ

∗ and if the 

makespan is attained in 𝑊𝐶ଶ, then 
ଵ

௠మ
∑ ൫𝑥௝ ൅ 𝑏௝ ൅ 𝑧௝൯௡

௝ୀଵ  ൑  𝐶ி௃೘భ,೘మ

∗ .∎ 

Lemma 11. 𝐶ோோி೘మ,೘భ 
∗ ൑  𝐶ி௃೘భ,೘మ

∗ and 𝐶஼ோி೘భ,೘మ

∗ ൑  𝐶ி௃೘భ,೘మ

∗ . 

Proof: The proof is obvious.∎ 
Consider again 𝑅𝑅𝐹௠మ,௠భ

 and the auxiliary two-stage flow shop now with processing times 

൫𝑥௝
ᇱ ൅ 𝑦௝

ᇱ, 𝑧௝
ᇱ൯. Let 𝐶௃஺య

be the makespan derived by JA for this AF. By appropriately substituting the 

following set of values of 𝑥௝
ᇱ, 𝑦௝

ᇱ and 𝑧௝
ᇱ in Lemma 7, we have 𝐶௃஺య

 ൑ 𝐶ோோி೘మ,೘భ 
∗ ൑  𝐶ி௃೘భ,೘మ

∗ . 

𝑥௝
ᇱ ൌ

ଵ

ଶ௠మ
𝑥௝, 𝑦௝

ᇱ ൌ
ଵ

ଶ௠భ
𝑦௝, 𝑧௝

ᇱ ൌ
ଵ

௠మ
𝑧௝  or (9) 

𝑥௝
ᇱ ൌ ଵ

௠భା௠మ
𝑥௝, 𝑦௝

ᇱ ൌ ଵ

௠భା௠మ
𝑦௝, 𝑧௝

ᇱ ൌ ଵ

௠మ
𝑧௝  or (10) 

𝑥௝
ᇱ ൌ

ଵ

௠మାଵ
𝑥௝, 𝑦௝

ᇱ ൌ
ଵ

௠భሺ௠మାଵሻ
𝑦௝, 𝑧௝

ᇱ ൌ
ଵ

௠మ
𝑧௝  or (11) 

𝑥௝
ᇱ ൌ

ଵ

 ௠మሺ௠భାଵሻ
𝑥௝, 𝑦௝

ᇱ ൌ
ଵ

௠భାଵ
𝑦௝, 𝑧௝

ᇱ ൌ
ଵ

௠మ
𝑧௝,   (12) 

By symmetry, let 𝐶௃஺ర
 be the makespan derived by JA for the AF with processing times 

൫𝑦௝
ᇱᇱ ൅ 𝑧௝

ᇱᇱ, 𝑥௝
ᇱᇱ൯.By appropriately substituting the following set of values of 𝑥௝

ᇱᇱ, 𝑦௝
ᇱᇱ and 𝑧௝

ᇱᇱ in Lemma 

7, we have, 𝐶௃஺ర
 ൑ 𝐶ோோி೘మ,೘భ 

∗ ൑  𝐶ி௃೘భ,೘మ

∗ . 

𝑥௝
ᇱᇱ ൌ

ଵ

௠మ
𝑥௝, 𝑦௝

ᇱᇱ ൌ
ଵ

ଶ௠భ
𝑦௝, 𝑧௝

ᇱᇱ ൌ
ଵ

ଶ௠మ
𝑧௝  or (13) 

𝑥௝
ᇱᇱ ൌ ଵ

௠మ
𝑥௝, 𝑦௝

ᇱᇱ ൌ ଵ

௠భା௠మ
𝑦௝, 𝑧௝

ᇱᇱ ൌ ଵ

௠భା௠మ
𝑧௝  or (14) 

𝑥௝
ᇱᇱ ൌ

ଵ

௠మ
𝑥௝, 𝑦′௝

ᇱ ൌ
ଵ

௠భሺ௠మାଵሻ
𝑦௝, 𝑧௝

ᇱᇱ ൌ
ଵ

௠మାଵ
𝑧௝  or (15) 

𝑥௝
ᇱᇱ ൌ

ଵ

௠మ
𝑥௝, 𝑦′௝

ᇱ ൌ
ଵ

௠భାଵ
𝑦௝, 𝑧௝

ᇱᇱ ൌ
ଵ

௠మሺ௠భାଵሻ
𝑧௝,   (16) 

8. Heuristic Algorithms for 𝑭𝑱ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒐 ൌ 𝟑|𝑪𝒎𝒂𝒙 

Since 𝐶𝑅𝐹௠భ,௠మ
 and 𝑅𝑅𝐹௠మ,௠భ

 are special cases of the more general problem 𝐹𝐽௠భ,௠మ
, the 

heuristics H1 and H3 can be modified accordingly to solve it. Since it was observed that as the 
number of jobs increased in 𝐶𝑅𝐹௠భ,௠మ

, the performance of the heuristics H1 and H3 also improved. 
With this insight, a modification of these heuristics can be constructed to solve 𝐹𝐽௠భ,௠మ

. 
Lemma 9 does not establish the precedence of the second operation before the third operation in 

an optimal solution. However, in order to establish some structure in the heuristic, we will make the 
second operation always precede the third operation. The following heuristic illustrates the use of 
this property together with the optimal property stated in Lemma 9. The modified versions of H1 
and H3 are now presented as H1a and H3a respectively. 

Heuristic H1a 

Let 𝑆ଵ.ଵ be the JA schedule for the AF with processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and 𝑆ଵ.ଶ be the JA 

schedule for the AF with processing times ቀ
ଵ

௠మ
𝑥௝,

ଵ

௠భ
𝑦௝ቁ. Let 𝑆ଶ.ଵ be the JA schedule for the AF with 

processing times ቀ
ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ and 𝑆ଶ.ଶ be the JA schedule for the AF with processing times 

ቀ
ଵ

௠భ
𝑦௝,

ଵ

௠మ
𝑧௝ቁ.  



Step 1. Using the sequence 𝑆ଵ.ଵ for A, B and C and 𝑆ଵ.ଶ for X, Y and Z: 
a. Apply FAM on A and X in 𝑊𝐶ଵ and 𝑊𝐶ଶ respectively. 
b. Apply LBM on B and Y in 𝑊𝐶ଶ and 𝑊𝐶ଵ respectively and schedule them as early as possible. 
c. Apply FAM on C and Z in 𝑊𝐶ଵ and 𝑊𝐶ଶ respectively. 
d. Calculate the makespan 𝐶𝑆௙. 
Step 2. Emulate Step 1 by using the sequences 𝑆ଶ.ଵ and 𝑆ଶ.ଶ instead of 𝑆ଵ.ଵ and 𝑆ଵ.ଶ respectively. 

Replace A with C and replace X with Z in step 1a. Replace C with A and Z with A in step 1c and 
calculate the makespan, 𝐶𝑆௕. 

Step 3. The makespan of the heuristic 𝐶ுଵ௔ ൌ min൫𝐶𝑆௙, 𝐶𝑆௕൯. 
Heuristic H3a 
Similar to H3, consider the two AF problems with processing times ൫𝑥௝

ᇱ ൅ 𝑦௝
ᇱ, 𝑧௝

ᇱ൯ and its 

symmetric pair ൫𝑦௝
ᇱᇱ ൅ 𝑧௝

ᇱᇱ, 𝑥௝
ᇱᇱ൯. Apply JA to these AF problems to obtain their corresponding 

schedule k, k = 1,2. Recall that in H3, 𝜎ଵ and 𝜎ଶ replaced 𝑆ଵ and 𝑆ଶ respectively in H1. Similarly, 
replace 𝑆ଵ.ଵ and 𝑆ଵ.ଶ with 𝜎ଵ and 𝜎ଶrespectively and 𝑆ଶ.ଵ and 𝑆ଶ.ଶ with 𝜏ଵ and 𝜏ଶ respectively in H1a. 

We can use any of the following four pairs of three processing time JA schedules in H3a. We 
distinguish them by the following: 

1. H3.1a when the two pairs of JA schedules are based on (1) and (5) for A, B and C and (9) and 
(13) for X, Y and Z. 

2. H3.2a when the two pairs of JA schedules are based on (2) and (6) for A, B and C and (10) and 
(14) for X, Y and Z. 

3. H3.3a when the two pairs of JA schedules are based on (3) and (7) for A, B and C and (11) and 
(15) for X, Y and Z. 

4. H3.4a when the two pairs of JA schedules are based on (4) and (8) for A, B and C and (12) 
and (16) for X, Y and Z.  

9. Computational Experiments for 𝑭𝑱ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒐 ൌ 𝟑|𝑪𝒎𝒂𝒙 

Similarly as in Section 5, a computational experiment using various parameter values was 
conducted to assess the performance of the heuristic algorithms H1a and H3a. H1a uses a two 
processing time JA schedule input while H3a uses a three processing time JA schedule. For each 
combination of values below, we generated 10 problem instances using: number of jobs, 𝑛ଵ and 𝑛ଶ, 
number of machines in stage i,𝑚௜ and the processing times, 𝑎௝, 𝑏௝, 𝑐௝, 𝑥௝, 𝑦௝ and 𝑧௝ which were 
randomly generated from U(l,u), which is a discrete uniform distribution in [l,u]. The values of these 
parameters are shown in Table 2. 

Table 2 shows the average deviation of the heuristic solution from the lower bound, 𝐿𝐵ଶ which 
was established in Lemma 10. From the computational experiments, we find that 𝐿𝐵ଶ dominates all 
the lower bounds established for 𝐹𝐽௠భ,௠మ

 and is thus used in the calculation of the average deviation 
AD. 

Since the utilization of the machines in the two work centers increases when processing both 
types 1 and 2 jobs, it is expected that the average deviation of the heuristic solutions will improve 
over the values seen in Table 1. This is validated by the results shown in Table 2. The following 
additional observations can be made from the computational experiment. 

1. The H3a heuristic generates a better solution than H1a based on the observed lower average 
deviation. The average deviation for H3a was 0.21% while it was 0.96% for H1a. In all the problem 
cases, each variant of H3a yielded a lower average deviation versus H1a. Among the variants of the 
H3a heuristic, H3.3a generated the smallest overall average deviation of 0.18%. However, H3.3a 
did not generate the smallest average deviation per problem scenario. 

2. As the number of jobs increases, the average deviation decreases. When n = 40, the average 
deviation of H1a is 1.27% and it decreases to 0.65% when n = 80. For H3a, the average deviation is 
0.30% when n = 40 and it decreases to 0.11% when n = 80. This can be explained by the higher 
utilization of the machines in the work centers when there are more jobs.  

3. As the variability of processing times increases, the average deviations in H3a also increase. 
This is observed when the average deviation of 0.15% for the interval [1,20] increases to 0.27% for 
the interval [10,50]. 



 

10. Conclusion 

This paper evaluated the performance of the heuristic solutions developed by Lorenzo (2017) 
for the 𝐹ሺ𝑚ଵ, 𝑚ଶሻ|𝑐ℎ𝑎𝑖𝑛 𝑟𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡|𝐶௠௔௫ problem against the best established lower bound 
through computational experiments. The results showed that the heuristic solutions gave very good 
approximations to the optimal solution. The 𝐶𝑅𝐹௠భ,௠మ

model is then extended to include features of 
the 𝑅𝑅𝐹௠మ,௠భ

 model which leads to the formulation of the 𝐹𝐽௠భ,௠మ
 model. The previous heuristic 

solutions and lower bounds developed for the 𝐶𝑅𝐹௠భ,௠మ
 model are then modified for the 

𝐹𝐽ሺ𝑚ଵ, 𝑚ଶሻ|𝑜 ൌ 3|𝐶௠௔௫ problem and the computational experiments again yield very good 
approximations to the optimal solution. Future research shall be directed towards the improvement 
of the heuristic solutions for 𝐶𝑅𝐹௠భ,௠మ

 which may yield better worst-case error bounds. 
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