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1 Preliminaries

The open shop problem to minimize �nish time (Gonzalez and Sahni 1976) is one of
the classical multistage scheduling problems and can be described as follows. Let M =
{M1, . . . ,Mm} be a set of m machines and J = {J1, . . . , Jn} be a set of n jobs. Each
job Jj consists of m operations (Oj1, . . . , Ojm). The operation Oji takes pji time units
and has to be processed on machine Mi, and no two operations of the same job can be
processed at the same time, as well as no machine can process two jobs simultaneously.
However, unlike �ow shop model, the operations of a job can be processed in any order.
We follow standard notation (Lawler et. al. 1993) to denote this problem as Om||Cmax.

It is known (Gonzalez and Sahni 1976) that if the number of the machines is at
least three, Om||Cmax is NP-hard. However, O2||Cmax is polynomially solvable. Several
algorithms are known to solve this problem in linear time. The �rst one was introduced by
Gonzalez and Sahni (1976). Other algorithms for this problem were proposed by Pinedo
and Schrage (1982), de Werra (1989), and Soper (2015).

The routing open shop problem is a certain generalization of the open shop problem
and can be described as follows. Each job is assigned to a node of a transportation network
given by an undirected edge-weighted graph G. The weight of an edge represents the time
required by any machine to travel between the respective nodes. To process a job, a machine
has to move to the node where the job is located. So, machines have to travel over the
transportation network in order to process the jobs. It is assumed that any number of
machines can travel over the same edge at the same time. All machines start at the same
node, called the depot, and must return to the depot after completing all jobs. The goal is to
minimize the makespan (i.e. the completion time of the last activity of a machine), denoted
by Rmax. The notation ROm||Rmax denotes the problem in case of m machines. We also
use notation ROm|G = X|Rmax in order to specify the structure X of the transportation
network.

The routing open shop problem is a generalization of both the open shop problem
(consider every edge of the graph to be of zero weight) and the metric traveling salesman
problem (consider every operation to be of zero processing time), so it is obviously NP-
hard in general case. The routing open shop problem was introduced and proved to be
NP-hard even in the simplest case with two machines and G = K2 in (Averbakh et.

al. 2006). We further extend the problem statement with the following options introduced
in (Chernykh 2016).

1. The depot in ROm||Rmax may be either �xed, i.e. de�ned in the problem instance, or
variable, i.e. it has to be chosen while composing a schedule. We write ROm|variable−
depot|Rmax to indicate the latter case.
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2. The travel times between the nodes may di�er for each machine. In particular, they
can be identical, uniform, i.e. for any two machinesMi1 andMi2 there is some k > 0 so
that any edge forMi1 is k times longer then it is forMi2 , or unrelated. In the three-�eld
notation, we write Qtt or Rtt in the last two cases respectively.

We write easy − TSP in three-�eld notation if the structure of the transportation
network G allows solving the underlying TSP in polynomial time. While the problem
RO2|variable− depot|Rmax is still NP-hard, being a generalization of the metric TSP, the
algorithmic complexity of the problem RO2|easy − TSP, variable − depot|Rmax was an
open question. The special case RO2|G = tree,Rtt, variable − depot|Rmax was proved to
be polynomially solvable in (Chernykh 2016).

In this paper, we present a linear time algorithm for the RO2|G = cycle, Rtt, variable−
depot|Rmax problem, which also induces a new linear algorithm for classic open shop model.
An important corollary of the result is the polynomial solvability of RO2|Qtt, easy −
TSP, variable − depot|Rmax, which provides an answer to the open question mentioned
above. As a by-product, we also provide an approximation result for theRO2|Qtt, variable−
depot|Rmax problem.

2 A linear time algorithm for RO2|G = cycle, Rtt, variable− depot|Rmax

Let G be a transportation network for an instance of general routing open shop problem.
We use the lower bound R for the optimal makespan, de�ned by the formula R = max

i
{`i+

Ti, dmax}, where dmax = max
j

m∑
i=1

pji is the maximum job length, `i =
n∑
j=1

pji is the load of

the machine Mi, and Ti is the length of a minimal route over G for Mi.
For any list of jobs π = (J1, J2, . . . Jn), de�ne S(π) to be an early schedule such that:
(a) the machine M1 performs operations in order O21 → O31 → . . .→ On1 → O11;
(b) the machine M2 performs operations in order O12 → O22 → O32 . . .→ On2;
(c) for any job but J1, the order of operations is Oj1 → Oj2.
The notation π+k is used for a shifted list (Jk, Jk+1, . . . , Jn, J1, . . . , Jk−1).

For RO2|G = cycle, Rtt, variable− depot|Rmax, consider the following
Algorithm A:
Input: An instance of the RO2|G = cycle, Rtt, variable− depot|Rmax problem.

1. Let π = (J1, J2, . . . Jn) be a list of jobs such that in the list of respective nodes
(v1, v2, . . . , vn) we have either vi = vi+1 or vi and vi+1 are adjacent in G for all
i ∈ {1, . . . , n− 1}. Choose the node v = v1 to be a depot.

2. If necessary, re-enumerate the machines so that `1 + T1 ≤ `2 + T2.
3. Compose a schedule S(π).
4. If Rmax(S(π)) = R, then Output S(π).

Else
(a) Let Jk from a node u be the job that is processed after the last time the second
machine idles in the schedule S(π).
(b) Taking u to be the depot, Output S(π+k).

Theorem 1. Algorithm A returns a schedule of length R in O(n) time.

Proof. Note that if Rmax(S(π)) > R, then M2 idles at some point. Indeed, if M2 does not,
then M1 must. By de�nition of S(π), the machine M1 may only idle before starting O11,
which is only possible ifO12 is processed in that idle interval. ThenRmax(Sπ) = max{d1, l2+
T2} ≤ R, a contradiction.
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Let t be the completion moment of the last idle interval of M2, which is also the
starting time of Ok2 for a certain k ∈ {1, . . . , n}. Consider the schedule S′(π) that is
obtained by shifting operations O12, . . . , Ok−1,2 in S(π) to the right so that M2 only idles
before processing of O21 starts as shown in Figure 1. The makespan of the schedule remains
the same. De�ne the blocks (i.e. ordered sets of operations and travel times between the
corresponding nodes) A1, A2, B1, and B2 as follows:

A1 = → O21 → . . .→ Ok1 ; A2 = → Ok+1,1 → . . .→ On1 → O11 ;

B1 = O12 → . . .→ Ok−1,2 → ; B2 = Ok2 → . . .→ On2 → .

The arrows denote the corresponding travel times.

Fig. 1. Example of schedule S′(π)

Let ∆ be the moment the processing of B1 starts, so that Rmax(S
′(π)) = ∆+ l2 + T2.

Note that the processing of A2 ends at l1 + T1, and l1 + T1 ≤ l2 + T2 implies

∆ ≤ Rmax(S
′(π))− (l1 + T1). (1)

Consider an schedule obtained by placing the block A2 before A1, and the block B2 in
front of B2 as shown in Figure 2.

Fig. 2. Result of the block permutation

The schedule derived by the permutation is feasible due to the inequality (1), unless
operations of Jk overlap, and in fact, it is exactly S(π+k). In case Ok2 does end later
thanOk1 starts, we obtain S(π

+k) by shiftingOk1 to the right accordingly. By the construction
of the schedule, the machine M2 never idles, and M1 may only idle before processing Ok1,
so Rmax(S(π

+k)) is either the length of Jk, or Rmax(S(π
+k)) = max{l1 +T1, l2 +T2} ≤ R.

Hence Rmax(S(π
+k)) = R, as wanted.

It is evident that an early schedule can be obtained in linear time. Thus, Algorithm A
runs in linear time, too. ut

3 Corollaries

Note that the problem O2||Cmax is a special case of RO2|variable− depot|Rmax when
the travel time between any two nodes is zero. Thus, Algorithm A induces a linear
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algorithm for the classic two-machine open shop problem that di�ers qualitatively from
the algorithms proposed before.

The main principle of Algorithm A is composing an early schedule such that the
orders of operation processing for the two machines are identical up to cyclic permutation
of jobs, with both machines following their optimal route at the same time. With that, we
consider two subcases of RO2|Rtt, variable − depot|Rmax that can be easily proved to be
solvable with the use of Algorithm A.

Corollary 1. The problem RO2|Qtt, easy − TSP, variable − depot|Rmax is solvable in

time O(n+ tTSP ), where tTSP is the time required to solve TSP on G.

Corollary 2. The problem RO2|Rtt,G = cactus, variable−depot|Rmax is solvable in O(n).

In case we have an approximate solution to TSP instead of an exact one, we can use
Algorithm A to obtain the same approximation for RO2|Qtt, variable− depot|Rmax. In
particular, by applying Christo�des-Serdyukov algorithm (Christo�des 1976, Serdyukov
1978), we derive the following

Corollary 3. There exists a 3
2 -approximate algorithm for RO2|Qtt, variable−depot|Rmax.
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