
1

Minimizing Delays in Aircraft-Landing Scheduling

Marie-Sklaerder Vié1 Nicolas Zu�erey1 Roel Leus2

1 GSEM - University of Geneva, Switzerland
marie-sklaerder.vie@unige.ch, n.zufferey@unige.ch

2 Faculty of Economics and Business, KU Leuven, Belgium, roel.leus@kuleuven.be

Keywords: aircraft scheduling, heuristic, delay minimization.

1 Introduction

In collaboration with EUROCONTROL (European Organization for the Safety of Air

Navigation), the considered Aircraft Landing Planning (ALP) problem aims at minimizing
delays (with respect to the published airline schedules) while satisfying the separation

constraint (which imposes minimum threshold times between planes, ranging from 90 to
240 seconds). In this study, the landing sequence of the planes has to be determined �rst,
and subsequently their associated landing times and Holding-Stack Patterns (HSPs) needed
to meet such landing times. HSPs consist of making a plane wait for its planned landing
time by making circular patterns close to the airport. The uncertainty due to winds is
taken into account in the simulation procedure (it has an impact on the arrival times).

Di�erent pointers on ALP can be found in the literature (Avella et al. 2017, Bennell et
al. 2017, Furini et al. 2015, Vié et al. 2018). The proposed solution method is a descent local
search with restarts. It is quick enough with respect to implementation in real situations as
it can be applied within seconds. Furthermore, the obtained results show that the delays
can be reduced by approximately 50% on average when compared to a common practice
rule. The paper is organized as follows. The problem is formally introduced in Section
2. Next, the proposed optimization method is designed in Section 3. Results are given in
Section 4, followed by conclusions in Section 5.

2 Problem Formulation

Each instance covers a 3-hour planning horizon, which allows capturing the peak period
of most airports. A rolling planning window Ht = [t, t + w[(with w = 45 minutes) is
associated with the current time t, with time steps of ∆t = 30 seconds. At each time t,
we only consider the �ights that are in cruise and have their landing planned in Ht. The
�ights that have their landing in Ht but are not yet in cruise are only considered when
they take-o�. They are called the pop-up �ights.

Each �ight has di�erent stages: (1) take-o�, (2) cruise, (3) approach, (4) landing (the
last L = 15 minutes, during which no modi�cation is performed). In this paper, we only
consider stages (2) and (3). From a practical standpoint, an initial schedule is �rst built
when each �ight enters the planning window (i.e., when it has taken o� in the case of a
pop-up �ight, or when its expected landing time is within the next 45 minutes). Next, we
can reschedule it (within the landing sequence) or make it wait to meet its planned arrival
time (through HSPs). The popular First-Come-First-Served (FCFS) rule is employed to
build the initial schedule. FCFS ranks the �ights according to their entry times in Ht (i.e.,
with respect to increasing published arrival times). FCFS used to be the most employed
current-practice approach (Erzberger 1995), and it is an optimal rule for the single-machine
job-scheduling problems when the maximum tardiness has to be minimized (Pinedo 2016)
(in our case we have to minimize the average tardiness).

2

We propose the following mathematical model (P t) for each time t. Among the �ights
that have already taken o�, we only consider the �ights with planned landing times up to
time t+w. Let J t be the set of (say n) �ights considered in Ht. For each �ight j ∈ J t, the
following data is given:

� rj : release date (i.e., take-o� time).
� dj : due date (i.e., published landing time).
� ptj : processing time (i.e., remaining time � in seconds � during the cruise phase).
� sj,j′ : set up time between �ights j and j′. More precisely, for each pair (j, j′) of �ights
such that j has to land before j′, their landing times must be separated by sj,j′ ∈
{90, 120, 150, 180, 210, 240} seconds, depending on the involved plane types.

We have two types of decision variables: (1) determine the vector Πt of the positions
of the �ights involved at time t (i.e., improve the current landing sequence by performing
an optimization method); (2) for each �ight j, determine a feasible landing time Ct

j (with
respect to the separation constraint) and assign a HSP of durationW t

j in order to meet C
t
j .

The objective function f to minimize is the sum of all positive delays (i.e., the total tardi-
ness): f =

∑
j∈Jt max{Ct

j−dj , 0}. Constraints (1) impose that two �ights are not scheduled
in the same position. Constraints (2) capture the separation constraints. Constraints (3)
determine the expected landing times. Constraints (4) are the domain constraints.

Πt
j 6= Πt

j′ ∀j, j′ ∈ J t (1)

Ct
j′ ≥ Ct

j + sj,j′ ∀j, j′ ∈ J t such that Πt
j + 1 = Πt

j′ (2)

Ct
j = t+ ptj +W t

j + L ∀j ∈ J t (3)

Πt
j ∈ {1, . . . , n}, Ct

j ≥ 0,W t
j ≥ 0 ∀j ∈ J t (4)

This problem can be seen as a variant of a single-machine total-tardiness problem with
setup times, which is NP-hard even without setup times (Du and Leung 1990).

3 Optimization Method

Algorithm 1 presents how to roll the planning window Ht over the full 3-hour planning
horizon. In Step 2, the landing positions Πt of the new �ights are computed with the
following insertion rules used in practice: (1) each pop-up �ight j that just entered Ht

(i.e., t ≥ rj but t − ∆t < rj , and t ≥ dj − w) is added to the landing sequence at a
position Πt such that its due date is respected (i.e., j is placed before all �ights j′ such
that Ct

j′ ≥ dj but after all the other �ights); (2) each �ight j that took o� a while ago

but just entered Ht (i.e., t ≥ rj and t ≥ dj − w, but t − ∆t < dj − w) is put at the
end of the landing sequence (FCFS rule). In Step 3, each remaining processing times ptj is
updated while considering an uncertainty parameter ut randomly generated following the
EUROCONTROL speci�cations. ut generates a deviation (e.g., due to wind) of the cruise
speed of around 7% (with an average of 0%, as positive deviations are compensated by
negative ones). In Step 4, and after each modi�cation of Πt, Ct and W t) are updated with
the following current-practice rules. First, we re-number all �ights of J t as j1, j2, . . . , jn
such that Πt

j1
< Πt

j2
< . . . < Πt

jn
. Next, for k = 1 to n, we perform steps (S1) and (S2).

(S1) Ct
jk

= max{Ct
jk−1

+sjk−1,jk , t+p
t
jk
+L} (i.e., the arrival time of jk is as close as possible

to the arrival time of the previous �ight jk−1, or as soon as jk can land).
(S2) W t

jk
= Ct

jk
− (t+ ptjk + L) (i.e., the �ight turns over the airport if it is too early with

respect to the planned landing time).

3

Algorithm 1 Optimization for each time step t

Initialization: set t = 0, Jt = Jt−∆t = ∅ and Πt = Πt−∆t = ().

While (not all �ights have landed), do:

1. Update Jt: remove the �ights that have started landing (i.e., each �ight j for which t ≥ Ctj−l),
and add the �ights that have just entered the updated planning window Ht (i.e., each �ight
j for which t ≥ rj and t ≥ dj − w).

2. Compute the positions of the new �ights (i.e., the �ights that are in Jt but not in Jt−∆t) to
obtain the vector Πt, based on Πt−∆t and the insertion rules.

3. Update the remaining cruise time for each �ight j: set ptj = pt−∆tj −∆t · (1 + utj).

4. Update Ct and W t according to the new �ight positions Πt and the processing times pt.
5. Improve solution (Πt, Ct,W t) with a solution method.
6. Move to the next time step: set t = t+∆t and Ht = [t, t+ w[.

As (1) the considered problem is NP-hard, (2) up to 24 �ights are involved in Ht, and
(3) the allowed computing-time limit T is very short (T = ∆t = 30 seconds), quite a
number of potential solution methods are not suitable for Step 5. Indeed, exact methods,
cumbersome population-based metaheuristics (e.g., genetic algorithms, ant algorithms) or
metaheuristics using a somewhat long learning process (e.g., simulated annealing) are too
slow. In contrast, a descent local search (DLS) appears as a promising candidate.

DLS takes as input the solution from Step 4. At each iteration, a neighbor solution S′

is generated from the current solution S = (Πt, Ct,W t) by performing the best Reinsert
move on S. A move Reinsert consists of changing the position Πt

j of a �ight j ∈ J t within
the landing sequence. After each modi�cation of Πt, the associated variables (Ct,W t) must
be updated to have a feasible solution S′ (separation constraint) and to know f(S′). The
search process stops when no improvement of S is achieved during an iteration. In order
to use the full time budget T , DLS is restarted when it encounters a local minimum (it
occurs almost every second). The best visited solution is returned at the end.

At each iteration, two mechanisms are used for reducing the computational e�ort.
First, the new position for the investigated �ight j must be in [Πt

j − 5;Πt
j + 5]. This kind

of Constrained Position Shifting is standard (Balakrishnan and Chandran 2010). Indeed,
from a practical standpoint, it seems straightforward to reschedule a �ight not too far away
from its initial position. Second, only a random proportion ρ (tuned to 50%) of the possible
neighbor solutions is generated. These mechanisms allows to perform more iterations during
T seconds, which increases the exploration capability of DLS.

4 Results

The algorithms were coded in C++ (under Linux, 3.4 GHz Intel Quad-core i7 processor,
8 GB of DDR3 RAM). Table 1 compares the proposed DLS approach with FCFS (i.e., a
common practice rule, see Algorithm 1 without Step 5). For each instance (provided by
EUROCONTROL), the following information is provided: the number N of �ights, the
largest number nmax of �ights encountered in a planning window, the average delay and
the maximum delay (for both DLS and FCFS). The two latter quantities are computed
with respect to all �ights (in seconds), and averaged over 5 runs (with di�erent uncertainty
scenarios). The percentage gains of DLS (compared to FCFS) are given in the two last
columns (a negative value indicates a better performance for FCFS). We can see that DLS
can signi�cantly reduce the average delays (almost 50%). Interestingly, the improvement
is somewhat increasing with the di�culty of the instance (i.e., with N and nmax), but

4

further investigations are required to understand the bene�t of DLS with respect to the
instance characteristics. FCFS is often better regarding the maximum delay. It makes sense
as FCFS guarantees optimality for minimizing the maximum delay (but not the average
delay) for single-machine job-scheduling contexts. However, DLS can sometimes do better
even for the maximum delay, as it reacts to uncertainties whereas FCFS does not.

Table 1. Comparison of FCFS with DLS for 15 instances provided by EUROCONTROL.

FCFS DLS % Gain
Instance N nmax avg. delay max delay avg. delay max delay avg. delay max delay

1 59 16 91.36 305.00 59.96 450.20 34% -48%

2 35 10 156.08 528.20 96.98 490.40 38% 7%

3 64 20 154.41 447.60 93.05 456.00 40% -2%

4 79 24 388.30 782.60 228.31 1672.60 41% -114%

5 53 14 189.53 545.00 110.36 538.40 42% 1%

6 79 21 328.86 709.20 181.40 1629.20 45% -130%

7 75 18 208.88 558.80 111.38 475.40 47% 15%

8 75 24 288.57 651.40 143.88 1480.60 50% -127%

9 62 16 240.26 539.20 118.33 505.20 51% 6%

10 70 22 207.41 503.20 99.57 563.40 52% -12%

11 72 22 280.79 631.20 131.57 800.20 53% -27%

12 71 18 170.19 514.80 77.72 475.20 54% 8%

13 97 23 386.69 903.00 174.56 1247.60 55% -38%

14 61 15 195.54 644.60 86.58 612.80 56% 5%

15 97 20 234.52 569.00 97.04 662.20 59% -16%

Average results 234.76 588.85 120.71 803.96 48% -31%

5 Conclusion

The Aircraft Landing Planning is a challenging problem as the runway capacity is the
bottleneck of many airports. In collaboration with EUROCONTROL, this study proposes a
quick and e�cient descent-based solution method for minimizing delays. Indeed, solutions
can be obtained within seconds (which is appropriate for real-world implementation) and
the average delay is reduced by almost 50%. Possible future works include the development
of re�ned algorithms and other techniques (e.g., speed adjustments, detours) to make the
�ights meet their landing times, in order to reduce the over-the-airport tra�c.

Acknowledgements. Study partially �nanced by EUROCONTROL (SESAR2020 program).

Many thanks to Mr. Raphaël Christien for his availability/advices.

References

Avella P., Boccia M., Mannino C., Vasilyev I., 2017, "Time-Indexed Formulations for the Runway
Scheduling Problem", Transportation Science, Vol. 51 (4), pp. 1031-1386.

Balakrishnan H., Chandran B.G., 2010, "Algorithms for scheduling runway operations under con-
strained position shifting", Operations Research, Vol. 58 (6), pp. 1650-1665.

Bennell J.A., Mesgarpour M., Potts C.N., 2017, "Dynamic scheduling of aircraft landings", Euro-
pean Journal of Operational Research, Vol. 258 (1), pp. 315-327.

Du J., Leung J.Y.T., 1990, "Minimizing total tardiness on one machine is NP-hard", Mathematics

of Operations Research, Vol. 15 (3), pp. 483-495.
Erzberger H., 1995, "Design Principles and Algorithms for Automated Air Tra�c Management",

AGARD Lecture Series No. 200: Knowledge-Based Functions in Aerospace Systems, Madrid,

Paris, and San Francisco, Vol. 7 (2).
Furini F., Kidd M.P., Persiani C.A., Toth P., 2015, "Improved rolling horizon approaches to the

aircraft sequencing problem", Journal of Scheduling, Vol. 18, pp. 435-447.
Pinedo M., 2016, "Scheduling: Theory, Algorithms, and Systems", Springer.
Vié M.-S., Zu�erey N., Leus R., 2018, "Aircraft landing planning: past, present and future",

Proceedings of the 19th ROADEF Conference, Lorient, France.

